0000000000742911

AUTHOR

Jonathan Baets

REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31.

Contains fulltext : 71291.pdf (Publisher’s version ) (Closed access) Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for REEP1 mutations and copy number variations. We identified 13 novel and 2 known REEP1 mutations in 16 familial and sporadic patients by direct sequencing analysis. Twelve out of 16 mutations were small insertions, deletions or splice site mutations. These changes would result in shifts of the open-reading-frame followed by premature termination of translation and haploins…

research product

Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3.

Many neurodegenerative disorders present with sensory loss. In the group of hereditary sensory and autonomic neuropathies loss of nociception is one of the disease hallmarks. To determine underlying factors of sensory neurodegeneration we performed whole-exome sequencing in affected individuals with the disorder. In a family with sensory neuropathy with loss of pain perception and destruction of the pedal skeleton we report a missense mutation in a highly conserved amino acid residue of atlastin GTPase 3 (ATL3), an endoplasmic reticulum-shaping GTPase. The same mutation (p.Tyr192Cys) was identified in a second family with similar clinical outcome by screening a large cohort of 115 patients …

research product