0000000000744456
AUTHOR
Mohsine Zahid
Pressure solution compaction of sodium chlorate and implications for pressure solution in NaCl
Sodium chloride (NaCl) has been extensively used as a material to develop, test and improve pressure solution (PS) rock deformation models. However, unlike silicate and carbonate rocks, NaCl can deform plastically at very low stresses (0.5 MPa). This could mean that NaCl is less suitable for use as an analogue for rocks that do not deform plastically at conditions where PS is important. In order to test the reliability of NaCl as a rock analogue, we carried out a series of uniaxial compaction experiments on sodium chlorate (NaClO3) at room pressure and temperature (P‐T) conditions and applied effective stresses of 2.4 and 5.0 Mpa. NaClO3 is a very soluble, elastic‐brittle salt, that cannot …
Cataclastic solution creep of very soluble brittle salt as a rock analogue
Until about the late 1960s, macroscopically ductile deformation of quartz was seen as a microscopically cataclastic process by most geologists (cf. the origin of the name ‘mylonite’). Undulatory extinction, subgrains, recrystallised grains and even crystallographic preferred orientations were interpreted as due to water-assisted brittle deformation processes. Nowadays, by contrast, the occurrence of these optical microstructures is considered as conclusive and unequivocal evidence for dislocation creep. The abundance of these microstructures in naturally deformed rocks lead to the conclusion that dislocation creep is the most important ductile deformation mechanism within the Earth’s crust.…
Stress induced grain boundary migration in very soluble brittle salt
Abstract Grain boundary migration (GBM) was studied in-situ at room temperature, atmospheric pressure and an applied diffmfwerential stress of ∼9.5 MPa under the optical microscope, in a wet aggregate of an elastic-brittle salt (sodium chlorate). The aggregate was previously deformed predominantly by a combination of grain boundary sliding, pressure solution and cataclastic solution creep. After deformation, but when the sample was still under differential stress, undeformed, fracture-free grains were observed to grow at the cost of deformed, intensely fractured grains. GMB rates typically fell in the range 2--10 μm/day. GBM took place only as long as the sample was under stress. Boundaries…