0000000000744873
AUTHOR
E. L. Torres
Mammogram segmentation by contour searching and massive lesion classification with neural network
The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting massive lesions in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration. A reduction of the surface under investigation is achieved, without loss of meaningful information, through segmentation of the whole image, by means of a ROI Hunter algorithm. In the following classification step, feature extraction plays a fundamental role: some features give geometrical information, other ones provide shape parameters. Once the features are computed for each ROI, they …
Mammogram Segmentation by Contour Searching and Mass Lesions Classification with Neural Network
The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting masses in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration (Medical Applications on a Grid Infrastructure Connection). A reduction of the whole image's area under investigation is achieved through a segmentation process, by means of a ROI Hunter algorithm, without loss of meaningful information. In the following classification step, feature extraction plays a fundamental role: some features give geometrical information, other ones provide shape parameters.…