Distinguishing Majorana Zero Modes from Impurity States through Time-Resolved Transport
We study time-resolved charge transport in a superconducting nanowire using time-dependent Landauer-B{\"u}ttiker theory. We find that the steady-state Majorana zero-bias conductance peak emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These oscillations are absent for a trivial impurity state that otherwise shows a very similar steady-state signal as the Majorana zero mode. In addition, we find that Andreev bound states or quasi-Majorana states in the topologically trivial bulk phase can give rise to a zero-bias conductance peak, also retaining the transient properties of the Majorana zero mode. Our results imply that (1) time-resolved transport m…
Light-induced anomalous Hall effect in massless Dirac fermion systems and topological insulators with dissipation
Employing the quantum Liouville equation with phenomenological dissipation, we investigate the transport properties of massless and massive Dirac fermion systems that mimics graphene and topological insulators, respectively. The massless Dirac fermion system does not show an intrinsic Hall effect, but it shows a Hall current under the presence of circularly-polarized laser fields as a nature of a optically-driven nonequilibrium state. Based on the microscopic analysis, we find that the light-induced Hall effect mainly originates from the imbalance of photocarrier distribution in momentum space although the emergent Floquet–Berry curvature also has a non-zero contribution. We further compute…
How Circular Dichroism in Time- and Angle-Resolved Photoemission Can Be Used to Spectroscopically Detect Transient Topological States in Graphene
Pumping graphene with circularly polarized light is the archetype of light-tailoring topological bands. Realizing the induced Floquet-Chern-insulator state and demonstrating clear experimental evidence for its topological nature has been a challenge, and it has become clear that scattering effects play a crucial role. We tackle this gap between theory and experiment by employing microscopic quantum kinetic calculations including realistic electron-electron and electron-phonon scattering. Our theory provides a direct link to the build up of the Floquet-Chern-insulator state in light-driven graphene and its detection in time- and angle-resolved photoemission spectroscopy (ARPES). This approac…
Microscopic theory for the light-induced anomalous Hall effect in graphene
We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature…
Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials
Nature Communications 8, 13940 (2017). doi:10.1038/ncomms13940
Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials
Orbital polarization and Berry curvature signatures are mapped out by circular dichroism in angle-resolved photoemission.