0000000000745281

AUTHOR

Michael A. Sentef

0000-0002-7946-0282

showing 6 related works from this author

Distinguishing Majorana Zero Modes from Impurity States through Time-Resolved Transport

2019

We study time-resolved charge transport in a superconducting nanowire using time-dependent Landauer-B{\"u}ttiker theory. We find that the steady-state Majorana zero-bias conductance peak emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These oscillations are absent for a trivial impurity state that otherwise shows a very similar steady-state signal as the Majorana zero mode. In addition, we find that Andreev bound states or quasi-Majorana states in the topologically trivial bulk phase can give rise to a zero-bias conductance peak, also retaining the transient properties of the Majorana zero mode. Our results imply that (1) time-resolved transport m…

SuperconductivityPhysicsSettore FIS/03Zero modeCondensed Matter - Mesoscale and Nanoscale PhysicssuprajohtavuusCondensed matter physicsPhase (waves)General Physics and AstronomyConductanceFOS: Physical sciencesCharge (physics)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesTopological quantum computerPhysics::History of Physics010305 fluids & plasmasMAJORANAnanorakenteet0103 physical sciencesBound stateMesoscale and Nanoscale Physics (cond-mat.mes-hall)kvanttifysiikka010306 general physics
researchProduct

Light-induced anomalous Hall effect in massless Dirac fermion systems and topological insulators with dissipation

2019

Employing the quantum Liouville equation with phenomenological dissipation, we investigate the transport properties of massless and massive Dirac fermion systems that mimics graphene and topological insulators, respectively. The massless Dirac fermion system does not show an intrinsic Hall effect, but it shows a Hall current under the presence of circularly-polarized laser fields as a nature of a optically-driven nonequilibrium state. Based on the microscopic analysis, we find that the light-induced Hall effect mainly originates from the imbalance of photocarrier distribution in momentum space although the emergent Floquet–Berry curvature also has a non-zero contribution. We further compute…

PopulationFOS: Physical sciencesGeneral Physics and AstronomyPosition and momentum spaceanomalous Hall effect01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionsymbols.namesakeHall effectlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicseducationQuantumPhysicseducation.field_of_studyCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsGrapheneFloquet statesopen quantum systemsMassless particleDirac fermionTopological insulatorsymbolsPhysics - OpticsOptics (physics.optics)
researchProduct

How Circular Dichroism in Time- and Angle-Resolved Photoemission Can Be Used to Spectroscopically Detect Transient Topological States in Graphene

2020

Pumping graphene with circularly polarized light is the archetype of light-tailoring topological bands. Realizing the induced Floquet-Chern-insulator state and demonstrating clear experimental evidence for its topological nature has been a challenge, and it has become clear that scattering effects play a crucial role. We tackle this gap between theory and experiment by employing microscopic quantum kinetic calculations including realistic electron-electron and electron-phonon scattering. Our theory provides a direct link to the build up of the Floquet-Chern-insulator state in light-driven graphene and its detection in time- and angle-resolved photoemission spectroscopy (ARPES). This approac…

EngineeringtopologyQC1-999Floquet engineeringFOS: Physical sciencesGeneral Physics and AstronomyLibrary sciencespin53001 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasCondensed Matter - Strongly Correlated Electrons0103 physical sciencesddc:530floquet-bloch010306 general physicsdrivenCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)tr-ARPESbusiness.industryPhysicsEuropean researchMaterials Science (cond-mat.mtrl-sci)dissipationCondensed Matter::Strongly Correlated ElectronsbusinessPhysical Review X
researchProduct

Microscopic theory for the light-induced anomalous Hall effect in graphene

2019

We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature…

Dirac (software)PopulationFOS: Physical sciences02 engineering and technology01 natural sciencesSettore FIS/03 - Fisica Della Materialaw.inventionlawHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicseducationQuantumPhysicseducation.field_of_studyCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsGrapheneRelaxation (NMR)dissipation021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFloquet topologyBerry connection and curvatureMicroscopic theory0210 nano-technologyPhysics - OpticsOptics (physics.optics)Physical Review B
researchProduct

Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials

2017

Nature Communications 8, 13940 (2017). doi:10.1038/ncomms13940

Floquet theoryFloquet theorytopologyBIOCHEMISTRY AND MOLECULAR BIOLOGYBand gapScienceFOS: Physical sciencesPhysics::OpticsGeneral Physics and AstronomyWeyl semimetal02 engineering and technologysuperconductors01 natural sciencesArticleSettore FIS/03 - Fisica Della MateriaGeneral Biochemistry Genetics and Molecular Biologyfermi arcsultrahigh mobility0103 physical sciencessurfacemagnetoresistanceTopological ordersuperconductores010306 general physicstaasPhysicstopological insulatorCondensed Matter - Materials ScienceMultidisciplinaryCondensed matter physicsPHYSICS AND ASTRONOMYgrapheneQ500Materials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologySemimetalCHEMISTRY MULTIDISCIPLINARYTopological insulatorFemtosecondcd3as2State of matterCondensed Matter::Strongly Correlated Electronsddc:5000210 nano-technologydiscoveryNature Communications
researchProduct

Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials

2020

Orbital polarization and Berry curvature signatures are mapped out by circular dichroism in angle-resolved photoemission.

Angular momentumtopologyAb initioPhysics::OpticsPosition and momentum spaceAngle-resolved photoemission spectroscopy02 engineering and technologyDichroic glass01 natural sciencesSettore FIS/03 - Fisica Della MateriaCondensed Matter::Materials ScienceQuantum mechanicsCondensed Matter::Superconductivity0103 physical sciences010306 general physicsResearch ArticlesPhysicsMultidisciplinaryPhysicsSciAdv r-articles021001 nanoscience & nanotechnologyARPESCondensed Matter PhysicsDensity functional theoryCondensed Matter::Strongly Correlated ElectronsBerry connection and curvatureMathematics::Differential Geometry0210 nano-technologyGround stateResearch Article
researchProduct