0000000000745288

AUTHOR

Sari Uusheimo

0000-0002-3098-0922

showing 2 related works from this author

High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate

2018

Constructed wetlands provide cost-efficient nutrient removal, with minimal input of human labor and energy, and their number is globally increasing. However, in northern latitudes, wetlands are rarely utilized, because their nutrient removal efficiency has been questioned due to the cold climate. Here, we studied nutrient retention and nitrogen removal in a boreal constructed wetland (4-ha) receiving treated nitrogen-rich wastewater. On a yearly basis, most of the inorganic nutrients were retained by the wetland. The highest retention efficiency was found during the ice-free period, being 79% for ammonium-nitrogen (NH4+-N), 71% for nitrate-nitrogen (NO3--N), and 88% for phosphate-phosphorus…

Denitrification010504 meteorology & atmospheric sciencesconstructed wetlandNitrogenP REDUCTIONSta1172Wetlandjätevesi010501 environmental sciencesWaste Disposal Fluid01 natural scienceskosteikotNutrienttyppiilmastoEnvironmental ChemistryN2O PRODUCTIONTEMPERATUREwastewater1172 Environmental sciences219 Environmental biotechnology0105 earth and related environmental sciencesjäteveden käsittelygeographyjätevedenpuhdistamotgeography.geographical_feature_categoryDUAL NUTRIENT NFRESH-WATERANAMMOX PROCESScold climateGeneral ChemistryDENITRIFICATIONAMMONIUM15. Life on land6. Clean waterWastewater13. Climate actionPHOSPHORUS LIMITATIONWetlandsEnvironmental chemistryEUTROPHICATION1181 Ecology evolutionary biologyConstructed wetlandEnvironmental scienceSewage treatmentNitrificationhigh nitrogen removalEutrophicationEnvironmental Science and Technology
researchProduct

Science Advances

2019

River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constrai…

Aquatic Ecology and Water Quality Managementriparian zonesORGANIC-MATTER DECOMPOSITIONBiodiversité et EcologieOceanografi hydrologi och vattenresurser/dk/atira/pure/sustainabledevelopmentgoals/life_on_landCarbon CycleCARBONekosysteemitOceanography Hydrology and Water Resourcesbiomesbiomitddc:570carbon cycleHumansSTREAMSLife ScienceHuman ActivitiesRiparian zonesTEMPERATUREInstitut für Biochemie und BiologieEcosystemComputingMilieux_MISCELLANEOUSSDG 15 - Life on Landaquatic ecosystemsScience & TechnologyWIMEKhiilen kiertovesiekosysteemitAquatic EcologyAquatische Ecologie en WaterkwaliteitsbeheerriversMultidisciplinary Sciencesekosysteemit (ekologia)BiomonitoringarticlesScience & Technology - Other Topics[SDE.BE]Environmental Sciences/Biodiversity and EcologyecosystemsjoetEnvironmental Monitoring
researchProduct