6533b82ffe1ef96bd1295182

RESEARCH PRODUCT

High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate

Tiina TulonenSanni L. AaltoSanni L. AaltoSari UusheimoJussi HuotariLauri ArvolaAntti J. Rissanen

subject

Denitrification010504 meteorology & atmospheric sciencesconstructed wetlandNitrogenP REDUCTIONSta1172Wetlandjätevesi010501 environmental sciencesWaste Disposal Fluid01 natural scienceskosteikotNutrienttyppiilmastoEnvironmental ChemistryN2O PRODUCTIONTEMPERATUREwastewater1172 Environmental sciences219 Environmental biotechnology0105 earth and related environmental sciencesjäteveden käsittelygeographyjätevedenpuhdistamotgeography.geographical_feature_categoryDUAL NUTRIENT NFRESH-WATERANAMMOX PROCESScold climateGeneral ChemistryDENITRIFICATIONAMMONIUM15. Life on land6. Clean waterWastewater13. Climate actionPHOSPHORUS LIMITATIONWetlandsEnvironmental chemistryEUTROPHICATION1181 Ecology evolutionary biologyConstructed wetlandEnvironmental scienceSewage treatmentNitrificationhigh nitrogen removalEutrophication

description

Constructed wetlands provide cost-efficient nutrient removal, with minimal input of human labor and energy, and their number is globally increasing. However, in northern latitudes, wetlands are rarely utilized, because their nutrient removal efficiency has been questioned due to the cold climate. Here, we studied nutrient retention and nitrogen removal in a boreal constructed wetland (4-ha) receiving treated nitrogen-rich wastewater. On a yearly basis, most of the inorganic nutrients were retained by the wetland. The highest retention efficiency was found during the ice-free period, being 79% for ammonium-nitrogen (NH4+-N), 71% for nitrate-nitrogen (NO3--N), and 88% for phosphate-phosphorus (PO43--P). Wetland also acted as a buffer zone during the disturbed nitrification process of the wastewater treatment plant. Denitrification varied between 106 and 252 mg N m-2 d-1 during the ice-free period. During the ice-cover period, total gaseous nitrogen removal was 147 mg N m-2 d-1, from which 66% was removed as N2, 28.5% as N2O through denitrification, and 5.5% as N2 through anammox. Nearly 2600 kg N y-1 was estimated to be removed through microbial gaseous N-production which equaled 72% of NO3--N and 60% of TN yearly retention in the wetland. The wetland retained nutrients even in winter, when good oxygen conditions prevailed under ice. The results suggest that constructed wetlands are an efficient option for wastewater nitrogen removal and nutrient retention also in cold climates. acceptedVersion Peer reviewed

10.1021/acs.est.8b03032http://juuli.fi/Record/0334959418