0000000000745521

AUTHOR

Ana Cuadrado

showing 2 related works from this author

Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 ph…

2006

Aplidin® is an antitumor agent in phase II clinical trials that induces apoptosis through the sustained activation of Jun N-terminal kinase (JNK). We report that Aplidin® alters glutathione homeostasis increasing the ratio of oxidized to reduced forms (GSSG/GSH). Aplidin® generates reactive oxygen species and disrupts the mitochondrial membrane potential. Exogenous GSH inhibits these effects and also JNK activation and cell death. We found two mechanisms by which Aplidin® activates JNK: rapid activation of Rac1 small GTPase and downregulation of MKP-1 phosphatase. Rac1 activation was diminished by GSH and enhanced by L-buthionine (SR)-sulfoximine, which inhibits GSH synthesis. Downregulatio…

rac1 GTP-Binding ProteinProgrammed cell deathSmall interfering RNAGlutathione reductaseDown-RegulationAntineoplastic AgentsApoptosisBreast NeoplasmsCell Cycle ProteinsBiologyPeptides CyclicImmediate-Early ProteinsMembrane Potentialschemistry.chemical_compoundMiceDownregulation and upregulationDepsipeptidesProtein Phosphatase 1Phosphoprotein PhosphatasesAnimalsHomeostasisHumansMolecular Biologychemistry.chemical_classificationReactive oxygen speciesGlutathione PeroxidaseGlutathione DisulfideJNK Mitogen-Activated Protein KinasesProtein phosphatase 1Dual Specificity Phosphatase 1Cell BiologyGlutathioneCell biologyEnzyme ActivationOxidative StressGlutathione ReductasechemistryMitochondrial MembranesGlutathione disulfideCalciumProtein Tyrosine PhosphatasesReactive Oxygen SpeciesCopperHeLa CellsCell Death and Differentiation
researchProduct

p38α MAPK is required for contact inhibition

2005

Proliferation of nontransformed cells is regulated by cell-cell contacts, which are referred to as contact-inhibition. Despite its generally accepted importance for cell cycle control, knowledge about the intracellular signalling pathways involved in contact inhibition is scarce. In the present work we show that p38alpha mitogen-activated protein kinase (MAPK) is involved in the growth-inhibitory signalling cascade of contact inhibition in fibroblasts. p38alpha activity is increased in confluent cultures of human fibroblasts compared to proliferating cultures. Time course studies show a sustained activation of p38alpha in response to cell-cell contacts in contrast to a transient activation …

MAPK/ERK pathwayCancer ResearchContact InhibitionCell growthp38 mitogen-activated protein kinasesCell Culture TechniquesContact inhibitionFibroblastsBiologyCell biologyMitogen-Activated Protein Kinase 14Cell Transformation Neoplasticmedicine.anatomical_structureCell cultureNeoplasmsGeneticsmedicineHumansSignal transductionProtein kinase AFibroblastMolecular BiologyCell ProliferationSignal TransductionOncogene
researchProduct