0000000000746358

AUTHOR

Godofredo Bautista

Second-harmonic Generation Microscopy of Carbon Nanotubes

We image an individual single-walled carbon nanotube (SWNT) by second-harmonic generation (SHG) and transmission electron microscopy and propose that SHG microscopy could be used to probe the handedness of chiral SWNTs.

research product

Measurement of optical second-harmonic generation from an individual single-walled carbon nanotube

We show that optical second-harmonic generation (SHG) can be observed from individual single-walled carbon nanotubes (SWCNTs) and, furthermore, allows imaging of individual tubes. Detailed analysis of our results suggests that the structural noncentrosymmetry, as required for SHG, arises from the non-zero chiral angle of the SWCNT. SHG thus has potential as a fast, non-destructive, and simple method for imaging of individual nanomolecules and for probing their chiral properties. Even more, it opens the possibility to optically determine the handedness of individual SWCNTs.

research product

Multimodal nonlinear imaging of suspended carbon nanotubes using circular polarizations

In this work, multimodal nonlinear microscopy of suspended CNTs using circular polarizations (CP) was reported. Significant variations in the SHG and THG signals of the CNTs between left hand circular polarization (LHCP) and right hand circular polarization (RHCP) were observed. The variations in the nonlinear signals can be associated to the unique properties of the CNTs such as chirality.

research product

Background-Free Second-Harmonic Generation Microscopy of Individual Carbon Nanotubes

We use polarized second-harmonic generation (SHG) microscopy to investigate pristine air-suspended carbon nanotubes (CNT). We show that SHG originates from CNT chirality, allowing also different response for the two circular polarizations of fundamental light.

research product