0000000000746358
AUTHOR
Godofredo Bautista
Second-harmonic Generation Microscopy of Carbon Nanotubes
We image an individual single-walled carbon nanotube (SWNT) by second-harmonic generation (SHG) and transmission electron microscopy and propose that SHG microscopy could be used to probe the handedness of chiral SWNTs.
Measurement of optical second-harmonic generation from an individual single-walled carbon nanotube
We show that optical second-harmonic generation (SHG) can be observed from individual single-walled carbon nanotubes (SWCNTs) and, furthermore, allows imaging of individual tubes. Detailed analysis of our results suggests that the structural noncentrosymmetry, as required for SHG, arises from the non-zero chiral angle of the SWCNT. SHG thus has potential as a fast, non-destructive, and simple method for imaging of individual nanomolecules and for probing their chiral properties. Even more, it opens the possibility to optically determine the handedness of individual SWCNTs.
Multimodal nonlinear imaging of suspended carbon nanotubes using circular polarizations
In this work, multimodal nonlinear microscopy of suspended CNTs using circular polarizations (CP) was reported. Significant variations in the SHG and THG signals of the CNTs between left hand circular polarization (LHCP) and right hand circular polarization (RHCP) were observed. The variations in the nonlinear signals can be associated to the unique properties of the CNTs such as chirality.
Background-Free Second-Harmonic Generation Microscopy of Individual Carbon Nanotubes
We use polarized second-harmonic generation (SHG) microscopy to investigate pristine air-suspended carbon nanotubes (CNT). We show that SHG originates from CNT chirality, allowing also different response for the two circular polarizations of fundamental light.