0000000000746506

AUTHOR

David J. Broadhurst

Feynman diagrams as a weight system: four-loop test of a four-term relation

At four loops there first occurs a test of the four-term relation derived by the second author in the course of investigating whether counterterms from subdivergence-free diagrams form a weight system. This test relates counterterms in a four-dimensional field theory with Yukawa and $\phi^4$ interactions, where no such relation was previously suspected. Using integration by parts, we reduce each counterterm to massless two-loop two-point integrals. The four-term relation is verified, with $ = 0 - 3\zeta_3 + 6\zeta_3 - 3\zeta_3 = 0$, demonstrating non-trivial cancellation of the trefoil knot and thus supporting the emerging connection between knots and counterterms, via transcendental number…

research product

Gauge-invariant on-shellZ 2 in QED, QCD and the effective field theory of a static quark

We calculate theon-shell fermion wave-function renormalization constantZ 2 of a general gauge theory, to two loops, inD dimensions and in an arbitrary covariant gauge, and find it to be gauge-invariant. In QED this is consistent with the dimensionally regularized version of the Johnson-Zumino relation: d logZ 2/da 0=i(2π)−D e 0 2 ∫d D k/k 4=0. In QCD it is, we believe, a new result, strongly suggestive of the cancellation of the gauge-dependent parts of non-abelian UV and IR anomalous dimensions to all orders. At the two-loop level, we find that the anomalous dimension γ F of the fermion field in minimally subtracted QCD, withN L light-quark flavours, differs from the corresponding anomalou…

research product

Beyond the triangle and uniqueness relations: non-zeta counterterms at large $N$ from positive knots

Counterterms that are not reducible to ζn are generated by 3F2 hypergeometric series arising from diagrams for which triangle and uniqueness relations furnish insufficient data. Irreducible double sums, corresponding to the torus knots (4, 3) = 819 and (5, 3) = 10124, are found in anomalous dimensions at O(1/N 3) in the large-N limit, which we compute analytically up to terms of level 11, corresponding to 11 loops for 4-dimensional field theories and 12 loops for 2-dimensional theories. High-precision numerical results are obtained up to 24 loops and used in Pade resummations of e-expansions, which are compared with analytical results in 3 dimensions. The O(1/N 3) results entail knots gener…

research product

Three-loop relation of quark $$\overline {MS} $$ and pole masses

We calculate, exactly, the next-to-leading correction to the relation between the $$\overline {MS} $$ quark mass, $$\bar m$$ , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F−1 light quarks of massesM i <M. Combining this new result with known three-loop results for $$\overline {MS} $$ coupling constant and mass renormalization, we relate the pole mass to the…

research product