Novel general expressions that describe the behavior of the height equivalent of a theoretical plate in chromatographic systems involving electrically-driven and pressure-driven flows
Novel general expressions are constructed and presented that describe the behavior of the height equivalent of a theoretical plate (plate height), H, as a function of the linear velocity, Vx, along the axis, x, of the column and the kinetic parameters that characterize the mass transfer and adsorption mechanisms in chromatographic columns. Open tube capillaries as well as columns packed with either non-porous or porous particles are studied. The porous particles could have unimodal or bimodal pore-size distributions and intraparticle convective fluid flow and pore diffusion are considered. The expressions for the plate height, H, presented in this work could be applicable to high-performanc…