0000000000747722
AUTHOR
Kevin Roberts
From Seeds to Islands: Growth of Oxidized Graphene by Two-Photon Oxidation
The mechanism of two-photon induced oxidation of single-layer graphene on Si/SiO2 substrates is studied by atomic force microscopy (AFM) and Raman microspectroscopy and imaging. AFM imaging of areas oxidized by using a tightly focused femtosecond laser beam shows that oxidation is not homogeneous but oxidized and nonoxidized graphene segregate into separate domains over the whole irradiated area. The oxidation process starts from point-like “seeds” which grow into islands finally coalescing together. The size of islands before coalescence is 30–40 nm, and the density of the islands is on the order of 1011 cm–2. Raman spectroscopy reveals growth of the D/G band ratio along the oxidation. Sha…
From Seeds to Islands: Growth of Oxidized Graphene by Two-Photon Oxidation
The mechanism of two-photon induced oxidation of single-layer graphene on Si/SiO2 substrates is studied by atomic force microscopy (AFM) and Raman microspectroscopy and imaging. AFM imaging of areas oxidized by using a tightly focused femtosecond laser beam shows that oxidation is not homogeneous but oxidized and nonoxidized graphene segregate into separate domains over the whole irradiated area. The oxidation process starts from point-like “seeds” which grow into islands finally coalescing together. The size of islands before coalescence is 30–40 nm, and the density of the islands is on the order of 1011 cm–2. Raman spectroscopy reveals growth of the D/G band ratio along the oxidation. Sha…