0000000000749258

AUTHOR

A. A. San-blas

Compensation of the impact of low-cost manufacturing techniques in the design of E-plane multiport waveguide junctions

In this work, a full-wave tool for the accurate analysis and design of compensated E-plane multiport junctions is proposed. The implemented tool is capable of evaluating the undesired effects related to the use of low-cost manufacturing techniques, which are mostly due to the introduction of rounded corners in the cross section of the rectangular waveguides of the device. The obtained results show that, although stringent mechanical effects are imposed, it is possible to compensate for the impact of the cited low-cost manufacturing techniques by redesigning the matching elements considered in the original device. Several new designs concerning a great variety of E-plane components (such as …

research product

Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RM…

research product

Study of the multipactor phenomenon using a full-wave integral equation technique

Abstract Multipactor effect is a well-known phenomenon of RF breakdown in satellite payloads which degrades components, generates undesirable harmonics, contributes to power dissipation and increases noise in communications. Traditionally, multipactor has been investigated with the aim of obtaining the so-called multipactor threshold voltage, or to present different multipaction detection methods. However, very little attention has been focused on analysing this phenomenon using a multimodal approach. The main goal of this work is to analyse the interaction between a multipactor current and a realistic microwave cavity by means of a rigorous and accurate formulation. For the first time to t…

research product