THE BISHOP-PHELPS-BOLLOBAS THEOREM FOR BILINEAR FORMS
In this paper we provide versions of the Bishop-Phelps-Bollobás Theorem for bilinear forms. Indeed we prove the first positive result of this kind by assuming uniform convexity on the Banach spaces. A characterization of the Banach space Y Y satisfying a version of the Bishop-Phelps-Bollobás Theorem for bilinear forms on ℓ 1 × Y \ell _1 \times Y is also obtained. As a consequence of this characterization, we obtain positive results for finite-dimensional normed spaces, uniformly smooth spaces, the space C ( K ) \mathcal {C}(K) of continuous functions on a compact Hausdorff topological space K K and the space K ( H ) K(H) of compact operators on a Hilbert space H H . On the other hand, the B…
The Bishop-Phelps-Bollobás property for bilinear forms and polynomials
For a $\sigma$-finite measure $\mu$ and a Banach space $Y$ we study the Bishop-Phelps-Bollobás property (BPBP) for bilinear forms on $L_1(\mu)\times Y$, that is, a (continuous) bilinear form on $L_1(\mu)\times Y$ almost attaining its norm at $(f_0,y_0)$ can be approximated by bilinear forms attaining their norms at unit vectors close to $(f_0,y_0)$. In case that $Y$ is an Asplund space we characterize the Banach spaces $Y$ satisfying this property. We also exhibit some class of bilinear forms for which the BPBP does not hold, though the set of norm attaining bilinear forms in that class is dense.
Bishop–Phelps–Bollobás property for certain spaces of operators
Abstract We characterize the Banach spaces Y for which certain subspaces of operators from L 1 ( μ ) into Y have the Bishop–Phelps–Bollobas property in terms of a geometric property of Y , namely AHSP. This characterization applies to the spaces of compact and weakly compact operators. New examples of Banach spaces Y with AHSP are provided. We also obtain that certain ideals of Asplund operators satisfy the Bishop–Phelps–Bollobas property.