Mesoporous SiC with Potential Catalytic Application by Electrochemical Dissolution of Polycrystalline 3C-SiC
Electrochemical dissolution of highly doped (ρ ∼ 1 mΩ·cm, n-type) polycrystalline 3C-SiC in HF/H2O and HF/H2O/ethanol solutions allowed production of porous silicon carbide (por-SiC) and soluble carbon fluorooxide nanoparticles as a byproduct. The por-SiC is a crystalline material with large pore volume, surface area close to 100 m2 g–1, and open mesoporous structure. The surface of por-SiC is covered with a thin carbon-enriched layer, bearing carboxylic acid groups. Depending on the SiC resistivity, etchant composition, and current density, three different types of por-SiC morphology, namely, a macroporous tubular, mesoporous hierarchical, and mesoporous filamentary were revealed. A qualit…
Size and Surface Chemistry Tuning of Silicon Carbide Nanoparticles.
International audience; Chemical transformations on the surface of commercially available 3C-SiC nanoparticles were studied by means of FTIR, XPS, and temperature-programmed desorption mass spectrometry methods. Thermal oxidation of SiC NPs resulted in the formation of a hydroxylated SiO2 surface layer with C3Si–H and CHx groups over the SiO2/SiC interface. Controllable oxidation followed by oxide dissolution in HF or KOH solution allowed the SiC NPs size tuning from 17 to 9 nm. Oxide-free SiC surfaces, terminated by hydroxyls and C3Si–H groups, can be efficiently functionalized by alkenes under thermal or photochemical initiation. Treatment of SiC NPs by HF/HNO3 mixture produces a carbon-e…
Mesoporous silicon carbide via nanocasting of Ludox® xerogel
Porous SiC with uniformly sized 12 nm and 22 nm spherical mesopores was synthesized from nanocomposites of polycarbosilane (PCS) preceramic polymer and xerogels of Ludox® SiO2 nanoparticles as templates. The influence of PCS type (Mw 800 and 2000 Da), PCS : SiO2 ratio, pyrolysis temperature 1200–1400 °C, and addition of Ni complex to the preceramic composite was studied with respect to the SiC porous morphology, crystalline structure and chemical properties. We found that the pore walls of Ni-free por-SiC are composed of relatively large (20 nm) crystallites embedded inside a poorly crystalline SiC/SiC1+x phase. Increasing the pyrolysis temperature resulted in an increase of the large cryst…
Superior Fischer-Tropsch performance of uniform cobalt nanoparticles deposited into mesoporous SiC
Electrochemically-derived well-crystalline mesoporous silicon carbide (pSiC) was used as a host for cobalt nanoparticles to demonstrate superior catalytic performance during the CO hydrogenation according to Fischer-Tropsch. Colloidal Co nanoparticles (9 ± 0.4 nm) were prepared independently using colloidal recipes before incorporating them into pSiC and, for comparison purposes, into commercially available silica (Davisil) as well as foam-like MCF-17 supports. The Co/pSiC catalyst demonstrated the highest (per unit mass) catalytic activity of 117 µmol.g(CO)-1.g-1(Co).s-1 at 220 °C which was larger by about one order of magnitude as compared to both silica supported cobalt catalysts. Furthe…