0000000000750374
AUTHOR
S. Chernenko
Deep sub-threshold $K^\ast (892)^{\circ}$ production in collisions of Ar + KCl at 1.76 A GeV
The ALICE Transition Radiation Detector: Construction, operation, and performance
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …
Deep sub-threshold K*(892)0 production in collisions of Ar + KCl at 1.76A GeV
Results on the deep sub-threshold production of the short-lived hadronic resonance K*(892)0 are reported for collisions of Ar + KCl at 1.76A GeV beam energy, studied with the High Acceptance Di-Electron Spectrometer (HADES) at SIS18/GSI. The K*(892)0 production probability per central collision of \( P_{K^{*0}}=(4.4\pm 1.1 \pm 0.5)\times 10^{-4}\) and the K*(892)0/K0 ratio of \( P_{K^{*0}}/P_{K^0}=(1.9\pm 0.5\pm 0.3)\times 10^{-2}\) are determined at the lowest energy so far (i.e. deep below the threshold for the corresponding production in nucleon-nucleon collisions, \( \sqrt{s_{NN}}-\sqrt{s_{thr}}=-340\) MeV). The K*0/K0 ratio is compared with results of other experiments and with the pre…
The ALICE experiment at the CERN LHC
Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002
HADES experiment: di-lepton spectroscopy in p + p (2.2 GeV) and C+C (1 and 2 A GeV) collisions
The HADES (High Acceptance Di-Electron Spectrometer) is a tool designed for lepton pair (e+e−) spectroscopy in pion, proton and heavy ion induced reactions in the 1–2AGeV energy range. One of the goals of the HADES experiment is to study in-medium modifications of hadron properties like effective masses, decay widths, electromagnetic form factors etc. Such effects can be probed with vector mesons ( ρ,ω,ɸ ) decaying into e+e− channel. The identification of vector mesons by means of a HADES spectrometer is based on invariant mass reconstruction of e+e− pairs. The combined information from all spectrometer sub-detectors is used to reconstruct the di-lepton signal. The recent results from 2.2Ge…