0000000000751594

AUTHOR

Nevan J. Krogan

showing 2 related works from this author

A ciliopathy complex builds distal appendages to initiate ciliogenesis

2021

ABSTRACTCells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and super-resolved imaging, we identified a module which we term DISCO (DIStal centriole COmplex). DISCO components CEP90, MNR and OFD1 underlie human ciliopathies. This complex localized to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR did not generate cilia, failed to assemble distal appendages, and did not transduce Hedgehog signals. Disrupting the satellite pools did not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critica…

BioquímicaCentrioleGreen Fluorescent ProteinsRetinal Pigment EpitheliumBiologyCiliopathiesCell LineMice03 medical and health sciences0302 clinical medicineBacterial ProteinsGenes ReporterCiliogenesismedicineAnimalsHumansbiochemistryCiliadevelopmentHedgehogCentrioles030304 developmental biologyMice KnockoutAppendage0303 health sciencesCiliumciliaProteinsEpithelial CellscytoskeletonCell BiologyEmbryo Mammalianmedicine.diseaseCiliopathiesCell biologyMice Inbred C57BLLuminescent ProteinsCiliopathyGene Expression RegulationMicrotubule-Associated Proteins030217 neurology & neurosurgerySignal TransductionJournal of Cell Biology
researchProduct

Polycomb-like 2 Associates with PRC2 and Regulates Transcriptional Networks during Mouse Embryonic Stem Cell Self-Renewal and Differentiation

2010

SummaryPolycomb group (PcG) proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs and have recently been implicated in modulating embryonic stem cell (ESC) fate. We identified the PcG protein PCL2 (polycomb-like 2) in a genome-wide screen for regulators of self-renewal and pluripotency and predicted that it would play an important role in mouse ESC-fate determination. Using multiple biochemical strategies, we provide evidence that PCL2 is a Polycomb Repressive Complex 2 (PRC2)-associated protein in mouse ESCs. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics, defects in differentiation, and alte…

Pluripotent Stem CellsCellular differentiationGene regulatory networkDown-RegulationPolycomb-Group Proteinsmacromolecular substancesMethylationBiochemistryArticleCell LineHistonesSelf-RenewalMice03 medical and health sciences0302 clinical medicineEmbryonic Stem CellHistone methylationPolycomb-group proteinsGeneticsAnimalsGene Regulatory NetworksEpigeneticsInduced pluripotent stem cellEmbryonic Stem Cells030304 developmental biologyGenetics0303 health sciencesbiologyurogenital systemGene Expression ProfilingPolycomb Repressive Complex 2Cell DifferentiationCell BiologyCellular ReprogrammingSTEMCELLPRC2Embryonic stem cellRepressor ProteinsOncologyDifferentiation030220 oncology & carcinogenesisembryonic structuresbiology.proteinMolecular MedicineTranscriptional NetworkPRC2Genome-Wide Association StudyProtein BindingCell Stem Cell
researchProduct