The Spectrum of Analytic Mappings of Bounded Type
Abstract A Banach space E is said to be (symmetrically) regular if every continuous (symmetric) linear mapping from E to E ′ is weakly compact. For a complex Banach space E and a complex Banach algebra F , let H b ( E , F ) denote the algebra of holomorphic mappings from E to F which are bounded on bounded sets. We endow H b ( E , F ) with the usual Frechet topology. M ( H b ( E , F ), F ) denotes the set of all non-null continuous homomorphisms from H b ( E , F ) to F . A subset of G EF on which the extension of Zalduendo is multiplicative is presented and it is shown that, in general, the sets G EF and M ( H b ( E , F ), F ) do not coincide. We prove that if E is symmetrically regu…