0000000000752250
AUTHOR
Dieter Link
M-cadherin and its sisters in development of striated muscle
Cadherins are calcium-dependent, transmembrane intercellular adhesion proteins with morphoregulatory functions in the development and maintenance of tissues. In the development of striated muscle, the expression and function of mainly M-, N-, and R-cadherin has been studied so far. While these three cadherins are expressed in skeletal muscle cells, of these only N-cadherin is expressed in cardiac muscle. In this review, M-, N-, and R-cadherin are discussed as important players in the terminal differentiation and possibly also in the commitment of skeletal muscle cells. Furthermore, reports are described which evaluate the essential role of N-cadherin in the formation of heart tissue.
High-throughput Functional Genomics Identifies Genes That Ameliorate Toxicity Due to Oxidative Stress in Neuronal HT-22 Cells
We describe a novel genetic screen that is performed by transfecting every individual clone of an expression clone collection into a separate population of cells in a highthroughput mode. We combined high-throughput functional genomics with experimental validation to discover human genes that ameliorate cytotoxic responses of neuronal HT-22 cells upon exposure to oxidative stress. A collection of 5,000 human cDNAs in mammalian expression vectors were individually transfected into HT-22 cells, which were then exposed to H2O2. Five genes were found that are known to be involved in pathways of detoxification of peroxide (catalase, glutathione peroxidase-1, peroxiredoxin-1, peroxiredoxin-5, and…