0000000000754717

AUTHOR

Tobias Unruh

showing 4 related works from this author

Inelastic neutron and low-frequency Raman scattering in niobium-phosphate glasses: the role of spatially fluctuating elastic and elasto-optic constan…

2011

We investigate the low-frequency enhancement of vibrational excitations ('boson peak') in niobium-phosphate glasses through the combination of inelastic neutron and polarization-resolved Raman scattering. The spectra of these glasses reveal an enhancement of the vibrational density of states and of the cross section for spontaneous Raman scattering in the frequency range below 150?cm ? 1. A recent theoretical model that is based on fluctuating elastic and elasto-optic (Pockels) constants provides a unified description of the measured neutron and Raman spectra, including the depolarization ratio.

Condensed matter physicsChemistryInelastic scatteringNeutron scatteringCondensed Matter PhysicsMolecular physicsSmall-angle neutron scatteringsymbols.namesakeX-ray Raman scatteringsymbolsDepolarization ratioGeneral Materials ScienceCoherent anti-Stokes Raman spectroscopyRaman spectroscopyRaman scatteringJournal of Physics: Condensed Matter
researchProduct

Interface Molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factor

2019

The Cluster of Excellence funded this work through “Engineering of Advanced Materials” (EAM). The authors acknowledge financial support from the DFG research-training group GRK 1896 at Erlangen University and from the Joint Project Helmholtz-Institute Erlangen Nurnberg (HI-ERN) under Project No. DBF01253, respectively. C.J.B. acknowledges the financial support through the “Aufbruch Bayern” initiative of the state of Bavaria (EnCN and Solar Factory of the Future) and the “Solar Factory of the Future” with the Energy Campus Nurnberg (EnCN). S.L. acknowledges the Real Colegio Complutense in Harvard for a research grant, and to the Spanish Ministerio de Ciencia e Innovacion for a fellowship thr…

Materials scienceEuropean researchLibrary scienceData interpretation02 engineering and technologyAdvanced materials010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences7. Clean energy0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsElectrochemistryExperimental workFill factorChristian ministryDinàmica molecular0210 nano-technologyMaterialsCèl·lules fotoelèctriques
researchProduct

Reduced grey brookite for noble metal free photocatalytic H2evolution

2021

Herein we introduce for the first time a reduced “grey” brookite TiO2 photocatalyst, produced by thermal hydrogenation of brookite nanoparticles, that shows a remarkable noble metal free photocatalytic H2 evolution. Its activity is substantially higher than that of other TiO2 polymorphs, i.e. anatase or rutile, comparably sized and activated by hydrogenation under optimized conditions. Along with brookite powders, an oriented brookite single crystal was investigated as a defined surface to confirm the effects of the hydrogenation treatment. By a combination of electron paramagnetic resonance (EPR), electron and X-ray characterization techniques applied to the powders and single crystal, we …

AnataseMaterials scienceRenewable Energy Sustainability and the EnvironmentBrookiteNanoparticle02 engineering and technologyGeneral ChemistryTiO2 brookite H2 evolutionengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAmorphous solidChemical engineeringRutilevisual_artPhotocatalysisengineeringvisual_art.visual_art_mediumGeneral Materials ScienceNoble metalSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologySingle crystalJournal of Materials Chemistry A
researchProduct

Inelastic neutron and low-frequency Raman scattering in a niobium-phosphate glass for Raman gain applications

2011

Abstract We present measurements of the vibrational spectrum of a binary niobium-phosphate glass in the THz frequency range using inelastic neutron and Raman scattering. The spectra of these glasses show a low-frequency enhancement of the vibrational density of states (“boson peak”). Using a recently developed theory of vibrational excitations in disordered solids we are able to reconcile the measured neutron and Raman spectra using fluctuating elastic and Pockels constants as a model concept. As the spontaneous Raman susceptibility is a key parameter for Raman amplification our results suggest a significant gain profile for application of niobium-phosphate glasses in Raman amplifiers.

Raman amplificationChemistryAnalytical chemistryNeutron scatteringCondensed Matter PhysicsMolecular physicsInelastic neutron scatteringElectronic Optical and Magnetic Materialssymbols.namesakeX-ray Raman scatteringRaman coolingMaterials ChemistryCeramics and CompositessymbolsCoherent anti-Stokes Raman spectroscopyRaman spectroscopyRaman scatteringJournal of Non-Crystalline Solids
researchProduct