0000000000754862

AUTHOR

Gianfranco Bellipanni

Zebrafish as a Model for the Study of Chaperonopathies

There is considerable information on the clinical manifestations and mode of inheritance for many genetic chaperonopathies but little is known on the molecular mechanisms underlying the cell and tissue abnormalities that characterize them. This scarcity of knowledge is mostly due to the lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. In this article we introduce zebrafish as a suitable model to study molecular and cellular mechanisms pertaining to human chaperonopathies. Genetic chaperonopathies manifest themselves from very early in life so it is necessary to examine the impact of mutant chaperone genes during developmen…

research product

The Increase in Maternal Expression ofaxin1andaxin2Contribute to the Zebrafish MutantIchabodVentralized Phenotype

β-catenin is a central effector of the Wnt pathway and one of the players in Ca+-dependent cell-cell adhesion. While many wnts are present and expressed in vertebrates, only one β-catenin exists in the majority of the organisms. One intriguing exception is zebrafish that carries two genes for β-catenin. The maternal recessive mutation ichabod presents very low levels of β-catenin2 that in turn affects dorsal axis formation, suggesting that β-catenin1 is incapable to compensate for β-catenin2 loss and raising the question of whether these two β-catenins may have differential roles during early axis specification. Here we identify a specific antibody that can discriminate selectively for β-ca…

research product