0000000000755091

AUTHOR

S. Ulm

showing 4 related works from this author

Precise experimental investigation of eigenmodes in a planar ion crystal.

2012

The accurate characterization of eigenmodes and eigenfrequencies of two-dimensional ion crystals provides the foundation for the use of such structures for quantum simulation purposes. We present a combined experimental and theoretical study of two-dimensional ion crystals. We demonstrate that standard pseudopotential theory accurately predicts the positions of the ions and the location of structural transitions between different crystal configurations. However, pseudopotential theory is insufficient to determine eigenfrequencies of the two-dimensional ion crystals accurately but shows significant deviations from the experimental data obtained from resolved sideband spectroscopy. Agreement …

PhysicsQuantum PhysicsAtomic Physics (physics.atom-ph)General Physics and AstronomyQuantum simulatorFOS: Physical sciences01 natural sciences010305 fluids & plasmasIonPhysics - Atomic PhysicsPseudopotentialCrystal0103 physical sciencesCoulombIon trapAtomic physics010306 general physicsSpectroscopyQuantum Physics (quant-ph)Quantum computerPhysical review letters
researchProduct

Observation of the Kibble-Zurek scaling law for defect formation in ion crystals

2013

Traversal of a symmetry-breaking phase transition at finite rates can lead to causally separated regions with incompatible symmetries and the formation of defects at their boundaries, which has a crucial role in quantum and statistical mechanics, cosmology and condensed matter physics. This mechanism is conjectured to follow universal scaling laws prescribed by the Kibble-Zurek mechanism. Here we determine the scaling law for defect formation in a crystal of 16 laser-cooled trapped ions, which are conducive to the precise control of structural phases and the detection of defects. The experiment reveals an exponential scaling of defect formation γ(β), where γ is the rate of traversal of the …

Condensed Matter::Quantum GasesKibble-Zurek mechanismPhysicsScaling lawQuantum PhysicsMultidisciplinaryCondensed matter physicsCoulomb crystalsFOS: Physical sciencesGeneral Physics and AstronomyGeneral ChemistryMeasure (mathematics)General Biochemistry Genetics and Molecular BiologyIonCondensed Matter - Other Condensed MatterClassical mechanicsQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct

Transmission Microscopy with Nanometer Resolution Using a Deterministic Single Ion Source.

2015

We realize a single particle microscope by using deterministically extracted laser-cooled ^{40}Ca^{+} ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8±1.0  nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to ma…

PhysicsMicroscopebusiness.industryDetectorResolution (electron density)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionCardinal pointOpticsOrders of magnitude (time)law0103 physical sciencesMicroscopyParticleIon trap010306 general physics0210 nano-technologybusinessPhysical review letters
researchProduct

Quantum magnetism of spin-ladder compounds with trapped-ion crystals

2012

Abstract The quest for experimental platforms that allow for the exploration, and even control, of the interplay of low dimensionality and frustration is a fundamental challenge in several fields of quantum many-body physics, such as quantum magnetism. Here, we propose the use of cold crystals of trapped ions to study a variety of frustrated quantum spin ladders. By optimizing the trap geometry, we show how to tailor the low dimensionality of the models by changing the number of legs of the ladders. Combined with a method for selectively hiding ions provided by laser addressing, it becomes possible to synthesize stripes of both triangular and Kagome lattices. Besides, the degree of frustrat…

Phase transitionMagnetismmedia_common.quotation_subjectGeneral Physics and AstronomyFrustrationFOS: Physical sciences01 natural sciencesIonenfalle010305 fluids & plasmasCondensed Matter - Strongly Correlated Electrons0103 physical sciencesTrapped ionsddc:530010306 general physicsSpin (physics)AnisotropyQuantummedia_commonPhysicsQuantum PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)DDC 530 / PhysicsANNNI modelQuantum Gases (cond-mat.quant-gas)Condensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Curse of dimensionalityNew Journal of Physics
researchProduct