0000000000755179

AUTHOR

Fabrizio Buscemi

Causality and Localization Operators

The evolution of the expectation values of one and two points scalar field operators and of positive localization operators, generated by an istantaneous point source is non local. Non locality is attributed either to zero point vacuum fluctuations, or to non local operations or to the microcausality principle being no satisfied.

research product

Localization in a QFT Model

Localization properties of a QFT model, consisting of a quantum scalar field interacting linearly with a classical localized source, are investigated using various approaches present in the literature. We evaluate, to any order of the field–matter coupling constant, the time evolution of average values of one-point localization observables and scalar product between the quantum field state of the evolving system and localized states. We show that the appearance of nonlocality can be connected to nonlocal properties of localized states used or to the fact that localization operators do not satisfy the microcausality principle and therefore does not imply the violation of causality.

research product

Nonlocal quantum-field correlations and detection processes in quantum-field theory

Quantum detection processes in quantum field theory (QFT) must play a key role in the description of quantum-field correlations, such as the appearance of entanglement, and of causal effects. We consider the detection in the case of a simple QFT model with a suitable interaction to exact treatment, consisting of a quantum scalar field coupled linearly to a classical scalar source. We then evaluate the response function to the field quanta of two-level pointlike quantum model detectors, and analyze the effects of the approximation adopted in standard detection theory. We show that the use of the RWA, which characterizes the Glauber detection model, leads in the detector response to nonlocal …

research product

Non-locality and causal evolution in QFT

Non locality appearing in QFT during the free evolution of localized field states and in the Feynman propagator function is analyzed. It is shown to be connected to the initial non local properties present at the level of quantum states and then it does not imply a violation of Einstein's causality. Then it is investigated a simple QFT system with interaction, consisting of a classical source coupled linearly to a quantum scalar field, that is exactly solved. The expression for the time evolution of the state describing the system is given. The expectation value of any arbitrary ``good'' local observable, expressed as a function of the field operator and its space and time derivatives, is o…

research product