0000000000755402

AUTHOR

Alberto Bietti

Convergence and Stability of Graph Convolutional Networks on Large Random Graphs

International audience; We study properties of Graph Convolutional Networks (GCNs) by analyzing their behavior on standard models of random graphs, where nodes are represented by random latent variables and edges are drawn according to a similarity kernel. This allows us to overcome the difficulties of dealing with discrete notions such as isomorphisms on very large graphs, by considering instead more natural geometric aspects. We first study the convergence of GCNs to their continuous counterpart as the number of nodes grows. Our results are fully non-asymptotic and are valid for relatively sparse graphs with an average degree that grows logarithmically with the number of nodes. We then an…

research product

On the Universality of Graph Neural Networks on Large Random Graphs

International audience; We study the approximation power of Graph Neural Networks (GNNs) on latent position random graphs. In the large graph limit, GNNs are known to converge to certain "continuous" models known as c-GNNs, which directly enables a study of their approximation power on random graph models. In the absence of input node features however, just as GNNs are limited by the Weisfeiler-Lehman isomorphism test, c-GNNs will be severely limited on simple random graph models. For instance, they will fail to distinguish the communities of a well-separated Stochastic Block Model (SBM) with constant degree function. Thus, we consider recently proposed architectures that augment GNNs with …

research product