0000000000755967
AUTHOR
Christian Rödel
Nanoscale subsurface dynamics of solids upon high-intensity laser irradiation observed by femtosecond grazing-incidence x-ray scattering
Observing ultrafast laser-induced structural changes in nanoscale systems is essential for understanding the dynamics of intense light-matter interactions. For laser intensities on the order of $10^{14} \, \rm W/cm^2$, highly-collisional plasmas are generated at and below the surface. Subsequent transport processes such as heat conduction, electron-ion thermalization, surface ablation and resolidification occur at picosecond and nanosecond time scales. Imaging methods, e.g. using x-ray free-electron lasers (XFEL), were hitherto unable to measure the depth-resolved subsurface dynamics of laser-solid interactions with appropriate temporal and spatial resolution. Here we demonstrate picosecond…
Radiation pressure-assisted acceleration of ions using multi-component foils in high-intensity laser–matter interactions
Experimental results on the acceleration of protons and carbon ions from ultra-thin polymer foils at intensities of up to 6x10(19)Wcm(-2) are presented revealing quasi-monoenergetic spectral characteristics for different ion species at the same time. For carbon ions and protons, a linear correlation between the cutoff energy and the peak energy is observed when the laser intensity is increased. Particle-in-cell simulations supporting the experimental results imply an ion acceleration mechanism driven by the radiation pressure as predicted for multi-component foils at these intensities.
Diagnostics for studies of novel laser ion acceleration mechanisms.
Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel accelera…
Enhanced radiation pressure-assisted acceleration by temporally tuned counter-propagating pulses
Within the last decade, laser-ion acceleration has become a field of broad interest. The possibility to generate short proton- or heavy ion bunches with an energy of a few tens of MeV by table-top laser systems could open new opportunities for medical or technical applications. Nevertheless, today's laser-acceleration schemes lead mainly to a temperature-like energy distribution of the accelerated ions, a big disadvantage compared to mono-energetic beams from conventional accelerators. Recent results 111 of laser-ion acceleration using radiation-pressure appear promising to overcome this drawback. In this paper, we demonstrate the influence of a second counter-propagating laser pulse intera…