0000000000756165

AUTHOR

Juergen Hescheler

showing 2 related works from this author

Perlecan is critical for heart stability

2008

Aims Perlecan is a heparansulfate proteoglycan found in basement membranes, cartilage, and several mesenchymal tissues that form during development, tumour growth, and tissue repair. Loss-of-function mutations in the perlecan gene in mice are associated with embryonic lethality caused primarily by cardiac abnormalities probably due to hemopericards. The aim of the present study was to investigate the mechanism underlying the early embryonic lethality and the pathophysiological relevance of perlecan for heart function. Methods and results Perlecan-deficient murine embryonic stem cells were used to investigate the myofibrillar network and the electrophysiological properties of single cardiomy…

Patch-Clamp TechniquesPhysiologyMyocardial InfarctionMice TransgenicCell CommunicationPerlecanSarcomereBasement MembraneVentricular Function LeftAdherens junctionExtracellular matrixMicePhysiology (medical)medicineAnimalsMyocytes CardiacCells CulturedEmbryonic Stem CellsBasement membranebiologyCartilageCell DifferentiationHeartAnatomyEmbryonic stem cellCell biologyMice Inbred C57BLcarbohydrates (lipids)Disease Models Animalmedicine.anatomical_structurebiology.proteinFemaleCardiology and Cardiovascular MedicineMyofibrilHeparan Sulfate ProteoglycansCardiovascular Research
researchProduct

<i>In vitro</i> Modeling of Ryanodine Receptor 2 Dysfunction Using Human Induced Pluripotent Stem Cells

2011

Background/Aims: Induced pluripotent stem (iPS) cells generated from accessible adult cells of patients with genetic diseases open unprecedented opportunities for exploring the pathophysiology of human diseases in vitro. Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited cardiac disorder that is caused by mutations in the cardiac ryanodine receptor type 2 gene (RYR2) and is characterized by stress-induced ventricular arrhythmia that can lead to sudden cardiac death in young individuals. The aim of this study was to generate iPS cells from a patient with CPVT1 and determine whether iPS cell-derived cardiomyocytes carrying patient specific RYR2 mutation recap…

PhysiologyRyanodine receptorCellular differentiationPharmacologyBiologyCatecholaminergic polymorphic ventricular tachycardiamedicine.diseaseRyanodine receptor 2Calcium imagingcardiovascular systemmedicineMyocytePatch clampInduced pluripotent stem cellCellular Physiology and Biochemistry
researchProduct