0000000000756436

AUTHOR

Luigi Sanità Di Toppi

0000-0002-8731-4904

The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents

Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd and As for humans is given by cigarette and cigar smoke. We investigated …

research product

Does air pollution influence the success of species translocation? Trace elements, ultrastructure and photosynthetic performances in transplants of a threatened forest macrolichen

Abstract Species translocation can be considered as a primary conservation strategy with reference to in situ conservation. In the case of lichens, translocations often risk to fail due stress factors associated with unsuitable receptor sites. Considering the bioecological characteristics of lichens, air pollution is among the most limiting stress factors. In this study, the forest macrolichen Lobaria pulmonaria was used as a model to test the hypothesis that the translocation of sensitive lichens is effective only in unpolluted environments. At purpose, 500 fragments or whole thalli were translocated in selected beech forests of Central Europe (the Western Carpathians, Slovakia) where the …

research product

Evolution and functional differentiation of recently diverged phytochelatin synthase genes from Arundo donax L.

Plant phytochelatin synthases undergo evolutionarily rapid functional differentiation after duplication, allowing fast and precise adjustment of metal detoxification capacity by modulation of both transcription and enzymatic activity.

research product