0000000000757291
AUTHOR
Zoran Kadelburg
Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces
Abstract Common fixed point results are obtained in 0-complete partial metric spaces under various contractive conditions, including g-quasicontractions and mappings with a contractive iterate. In this way, several results obtained recently are generalized. Examples are provided when these results can be applied and neither corresponding metric results nor the results with the standard completeness assumption of the underlying partial metric space can. MSC:47H10, 54H25.
Fixed point theorems for non-self mappings in symmetric spaces under φ-weak contractive conditions and an application to functional equations in dynamic programming
In this paper, we prove some common fixed point theorems for two pairs of non-self weakly compatible mappings enjoying common limit range property, besides satisfying a generalized phi-weak contractive condition in symmetric spaces. We furnish some illustrative examples to highlight the realized improvements in our results over the corresponding relevant results of the existing literature. We extend our main result to four finite families of mappings in symmetric spaces using the notion of pairwise commuting mappings. Finally, we utilize our results to discuss the existence and uniqueness of solutions of certain system of functional equations arising in dynamic programming.