WiWeHAR: Multimodal Human Activity Recognition Using Wi-Fi and Wearable Sensing Modalities
Robust and accurate human activity recognition (HAR) systems are essential to many human-centric services within active assisted living and healthcare facilities. Traditional HAR systems mostly leverage a single sensing modality (e.g., either wearable, vision, or radio frequency sensing) combined with machine learning techniques to recognize human activities. Such unimodal HAR systems do not cope well with real-time changes in the environment. To overcome this limitation, new HAR systems that incorporate multiple sensing modalities are needed. Multiple diverse sensors can provide more accurate and complete information resulting in better recognition of the performed activities. This article…