0000000000757573

AUTHOR

J.d. Holt

Precision Mass Measurement of $^{58-63}$Cr: Nuclear Collectivity towards the $N=40$ Island of Inversion

The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…

research product

High-resolution laser spectroscopy of Al27-32

Hyperfine spectra of Al27-32 (Z=13) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the 3s23p2P3/2o→3s24s2S1/2 atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of Al29 and electric quadrupole moments of Al29,30. A potentially reduced charge radius at N=19 may suggest an effect of the N=20 shell closure, which is visible in the Al chain, contrary to other isotopic chains in the sd shell. The experimental results are compared with theoretical calculations in the framework of the valence-space in-medium similarity renormalization gro…

research product

Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of Mg

Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be studied within a microscopic or ab initio framework without the use of effective charges; for example with the proper evolution of the E2 operator, or alternatively, through the use of an appropriate and manageable subset of particle–hole excitations. We present a precise determination of E2 strength in 22Mg and its mirror 22Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new B(E2) values while in-medium similarity-renormalization-group calculations consistently underpr…

research product

Electromagnetic moments of scandium isotopes and $N=28$ isotones in the distinctive $0f_{7/2}$ orbit

The electric quadrupole moment of $^{49}$Sc was measured by collinear laser spectroscopy at CERN-ISOLDE to be $Q_{\rm s}=-0.159(8)$ $e$b, and a nearly tenfold improvement in precision was reached for the electromagnetic moments of $^{47,49}$Sc. The single-particle behavior and nucleon-nucleon correlations are investigated with the electromagnetic moments of $Z=21$ isotopes and $N=28$ isotones as valence neutrons and protons fill the distinctive $0f_{7/2}$ orbit, respectively, located between magic numbers, 20 and 28. The experimental data are interpreted with shell-model calculations using an effective interaction, and ab-initio valence-space in-medium similarity renormalization group calcu…

research product