0000000000757659

AUTHOR

Guillaume Bécard

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

International audience; The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but thi…

research product

Structural and functional genomics of symbiotic arbuscular mycorrhizal fungi.

The absorbing organs (roots, rhizomes) of nearly all terrestrial plant families host an intimate symbiotic association, called a mycorrhiza, with specialized functional groups of soil fungi. The most common type of root symbiosis is the arbuscular mycorrhiza where soil fungi interact with a tremendous diversity of plant species, including many forest trees and agricultural, horticultural, and fruit crops (Gianinazzi et al., 2002). The fungi involved are very ancient microorganisms compared to other true fungi. Fossil data and molecular phylogenetic analyses indicate that their origin dates back to the Ordovician-Devonian era some 460 to 400 million years ago (Remy et al., 1994; Redecker et …

research product