0000000000757879
AUTHOR
P. Mikheenko
Nanosecond voltage pulses from dendritic flux avalanches in superconducting NbN films
Combined voltage and magneto-optical study of magnetic flux flow in superconducting NbN films is reported. The nanosecond-scale voltage pulses appearing during thermomagnetic avalanches have been recorded in films partially coated by a metal layer. Simultaneous magneto-optical imaging and voltage measurements allowed the pulses to be associated with individual flux branches penetrating the superconductor below the metal coating. From detailed characteristics of pulse and flux branches, the electrical field in the superconductor is found to be in the range of 5-50 kV/m, while the propagation speed of the avalanche during its final stage is found to be close to 5 km/s. peerReviewed
Ray optics behavior of flux avalanche propagation in superconducting films
Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell’s law. For the studied film of 170 nm thickness and a 0.9 μm thick metal layer, the refractive index was close to n = 1.4. The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipa…
Ray optics in flux avalanche propagation in superconducting films
Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu-layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 mkm thick metal layer, the refractive index was close to n=1.4. The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipat…