0000000000759494
AUTHOR
Andreas Hapfelmeier
Incremental linear model trees on massive datasets
The existence of massive datasets raises the need for algorithms that make efficient use of resources like memory and computation time. Besides well-known approaches such as sampling, online algorithms are being recognized as good alternatives, as they often process datasets faster using much less memory. The important class of algorithms learning linear model trees online (incremental linear model trees or ILMTs in the following) offers interesting options for regression tasks in this sense. However, surprisingly little is known about their performance, as there exists no large-scale evaluation on massive stationary datasets under equal conditions. Therefore, this paper shows their applica…
Pruning Incremental Linear Model Trees with Approximate Lookahead
Incremental linear model trees with approximate lookahead are fast, but produce overly large trees. This is due to non-optimal splitting decisions boosted by a possibly unlimited number of examples obtained from a data source. To keep the processing speed high and the tree complexity low, appropriate incremental pruning techniques are needed. In this paper, we introduce a pruning technique for the class of incremental linear model trees with approximate lookahead on stationary data sources. Experimental results show that the advantage of approximate lookahead in terms of processing speed can be further improved by producing much smaller and consequently more explanatory, less memory consumi…