0000000000759494

AUTHOR

Andreas Hapfelmeier

showing 2 related works from this author

Incremental linear model trees on massive datasets

2013

The existence of massive datasets raises the need for algorithms that make efficient use of resources like memory and computation time. Besides well-known approaches such as sampling, online algorithms are being recognized as good alternatives, as they often process datasets faster using much less memory. The important class of algorithms learning linear model trees online (incremental linear model trees or ILMTs in the following) offers interesting options for regression tasks in this sense. However, surprisingly little is known about their performance, as there exists no large-scale evaluation on massive stationary datasets under equal conditions. Therefore, this paper shows their applica…

Class (computer programming)Computer scienceProcess (engineering)business.industryComputationLinear modelSampling (statistics)computer.software_genreMachine learningKISS principleData miningArtificial intelligenceOnline algorithmbusinesscomputerProceedings of the 28th Annual ACM Symposium on Applied Computing
researchProduct

Pruning Incremental Linear Model Trees with Approximate Lookahead

2014

Incremental linear model trees with approximate lookahead are fast, but produce overly large trees. This is due to non-optimal splitting decisions boosted by a possibly unlimited number of examples obtained from a data source. To keep the processing speed high and the tree complexity low, appropriate incremental pruning techniques are needed. In this paper, we introduce a pruning technique for the class of incremental linear model trees with approximate lookahead on stationary data sources. Experimental results show that the advantage of approximate lookahead in terms of processing speed can be further improved by producing much smaller and consequently more explanatory, less memory consumi…

Stationary processComputational Theory and MathematicsComputer scienceLinear modelPruning (decision trees)AlgorithmTree (graph theory)Computer Science ApplicationsInformation SystemsData modelingIEEE Transactions on Knowledge and Data Engineering
researchProduct