0000000000759768

AUTHOR

Tina Maerker

showing 4 related works from this author

SANS (USH1G) expression in developing and mature mammalian retina

2008

AbstractThe human Usher syndrome (USH) is the most common form of combined deaf-blindness. Usher type I (USH1), the most severe form, is characterized by profound congenital deafness, constant vestibular dysfunction and prepubertal-onset of retinitis pigmentosa. Five corresponding genes of the six USH1 genes have been cloned so far. The USH1G gene encodes the SANS (scaffold protein containing ankyrin repeats and SAM domain) protein which consists of protein motifs known to mediate protein–protein interactions. Recent studies indicated SANS function as a scaffold protein in the protein interactome related to USH.Here, we generated specific antibodies for SANS protein expression analyses. Our…

Retinal degenerationScaffold proteinBlotting WesternNerve Tissue ProteinsBiologyRibbon synapseRats Inbred WKYPhotoreceptor cellRetinaMiceXenopus laevisAntibody SpecificityCiliogenesisConnecting ciliumRetinitis pigmentosamedicineAnimalsCiliaEye ProteinsCentrosomeRetinaCiliogenesisPhotoreceptor cellsCiliumImmune SeraCiliary BodyFibroblastsmedicine.diseaseSynapseSensory SystemsCell biologyRatsMice Inbred C57BLOphthalmologymedicine.anatomical_structureSynapsesRetinal developmentsense organsUsher SyndromesUsher syndromePhotoreceptor Cells VertebrateSynaptosomesVision Research
researchProduct

The Usher syndrome 1G protein SANS participates in the transport of ciliary cargo in photoreceptor cells

2012

Human Usher syndrome (USH) is the most common form of combined deaf-blindness, characterized by profound congenital deafness, constant vestibular dysfunction and pre-pubertal onset of retinitis pigmentosa. The USH1G protein SANS (scaffold protein containing ankyrin repeats and SAM domain) is associated with microtubules and mediates a transport related periciliary protein network in photoreceptor cells. Here we aim to enlighten the involvement of SANS in ciliary transport of photoreceptor cells by identifying proteins associated with SANS in transport complexes. In Y2H screen of retinal cDNA library we identified the direct binding of SANS to dynactin-1 (p150Glued), a subunit of the dynacti…

Scaffold proteinRetinal degenerationGeneticsOpsinlcsh:CytologyProtein subunitCiliumCell BiologyBiologymedicine.diseaseOpsin transportCell biologyMicrotubuleRetinitis pigmentosaPoster Presentationmedicinesense organslcsh:QH573-671Cilia
researchProduct

A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells.

2008

Contains fulltext : 69178.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic anal…

Scaffold proteinGenetics and epigenetic pathways of disease [NCMLS 6]XenopusCell Cycle ProteinsNerve Tissue ProteinsBiologyIn Vitro TechniquesNeuroinformatics [DCN 3]TransfectionModels BiologicalReceptors G-Protein-CoupledMiceChlorocebus aethiopsProtein Interaction MappingGeneticsPerception and Action [DCN 1]otorhinolaryngologic diseasesAnimalsHumansNeurosensory disorders [UMCN 3.3]Cell Cycle ProteinMicroscopy ImmunoelectronMolecular BiologyIntegral membrane proteinGenetics (clinical)Adaptor Proteins Signal TransducingRenal disorder [IGMD 9]GeneticsMice KnockoutExtracellular Matrix ProteinsCiliumSignal transducing adaptor proteinMembrane ProteinsGeneral MedicineTransmembrane proteinCell biologyMice Inbred C57BLCytoskeletal ProteinsEctodomainGenetic defects of metabolism [UMCN 5.1]COS CellsNIH 3T3 CellsCervical collarUsher SyndromesFunctional Neurogenomics [DCN 2]Photoreceptor Cells VertebrateSubcellular FractionsImmunity infection and tissue repair [NCMLS 1]
researchProduct

Direct binding of Magi2 to the USH1G protein SANS links the periciliary USH protein network to endocytosis

2012

The human Usher syndrome (USH) is the most common form of combined deaf-blindness. The encoded molecules are integrated into protein networks by scaffolds including the USH1G protein SANS (scaffold protein containing ankyrin repeats and SAM domain). Previous studies indicated SANS´ participation in vesicle transport and cargo handover at the periciliary region of photoreceptor cells. To decipher the precise cellular role of SANS, we searched for interacting partners. Therefore we adopted a yeast-2-hybrid screen of a retinal cDNA library using SANS´ C-terminus as bait. Amongst others we identified the MAGUK protein Magi2 (membrane-associated guanylate kinase inverted-2) as putative binding p…

Scaffold proteinImmunoelectron microscopyCell BiologyBiologyEndocytosisInteractomePhotoreceptor cellCell biologyVesicular transport proteinmedicine.anatomical_structureCiliary pocketPoster PresentationmedicineAnkyrin repeatCilia
researchProduct