0000000000759830

AUTHOR

Patrick Antolin

0000-0003-1529-4681

Reconnection nanojets in the solar corona

P.A. acknowledges STFC support from grant numbers ST/R004285/2 and ST/T000384/1 and support from the International Space Science Institute, Bern, Switzerland to the International Teams on ‘Implications for coronal heating and magnetic fields from coronal rain observations and modeling’ and ‘Observed Multi-Scale Variability of Coronal Loops as a Probe of Coronal Heating’. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 647214). P.T. was also supported by contracts 8100002705 and SP02H1701R from Lockheed-Martin to the Smithsonian Astrophysical Observatory (SAO), and NASA c…

research product

In Situ Generation of Transverse Magnetohydrodynamic Waves from Colliding Flows in the Solar Corona

This research has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 Research and Innovation Programme (grant agreement No. 647214). V.M.N. acknowledges the support of the BK21 plus program through the National Research Foundation funded by the Ministry of Education of Korea. Transverse magnetohydrodynamic (MHD) waves permeate the solar atmosphere and are a candidate for coronal heating. However, the origin of these waves is still unclear. In this Letter, we analyze coordinated observations from Hinode/Solar Optical Telescope (SOT) and Interface Region Imaging Spectrograph (IRIS) of a prominence/corona…

research product

MHD simulations of the in situ generation of kink and sausage waves in the solar corona by collision of dense plasma clumps

Funding: This research has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214). P.A. acknowledges funding from his STFC Ernest Rutherford Fellowship (No. ST/R004285/1). This research was supported by the Research Council of Norway through its Centres of Excellence scheme, project number 262622. Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar corona where the highly structured magnetic fields provide efficient wave guides for their propagation. While MHD waves have been observed originating from lower layers of the solar …

research product

Modelling of asymmetric nanojets in coronal loops

Context. Observations of reconnection jets in the solar corona are emerging as a possible diagnostic for studying highly elusive coronal heating. Such jets, and in particular those termed nanojets, can be observed in coronal loops and have been linked to nanoflares. However, while models successfully describe the bilateral post-reconnection magnetic slingshot effect that leads to the jets, observations reveal that nanojets are unidirectional or highly asymmetric, with only the jet travelling inward with respect to the coronal loop’s curvature being clearly observed. Aims. The aim of this work is to address the role of the curvature of the coronal loop in the generation and evolution of asym…

research product

Probing the physics of the solar atmosphere with the Multi-slit Solar Explorer (MUSE): I. Coronal Heating

The Multi-slit Solar Explorer (MUSE) is a proposed NASA MIDEX mission, currently in Phase A, composed of a multi-slit EUV spectrograph (in three narrow spectral bands centered around 171A, 284A, and 108A) and an EUV context imager (in two narrow passbands around 195A and 304A). MUSE will provide unprecedented spectral and imaging diagnostics of the solar corona at high spatial (<0.5 arcsec), and temporal resolution (down to ~0.5s) thanks to its innovative multi-slit design. By obtaining spectra in 4 bright EUV lines (Fe IX 171A , Fe XV 284A, Fe XIX-Fe XXI 108A) covering a wide range of transition region and coronal temperatures along 37 slits simultaneously, MUSE will for the first time …

research product