0000000000759830

AUTHOR

Patrick Antolin

0000-0003-1529-4681

showing 5 related works from this author

Reconnection nanojets in the solar corona

2020

P.A. acknowledges STFC support from grant numbers ST/R004285/2 and ST/T000384/1 and support from the International Space Science Institute, Bern, Switzerland to the International Teams on ‘Implications for coronal heating and magnetic fields from coronal rain observations and modeling’ and ‘Observed Multi-Scale Variability of Coronal Loops as a Probe of Coronal Heating’. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 647214). P.T. was also supported by contracts 8100002705 and SP02H1701R from Lockheed-Martin to the Smithsonian Astrophysical Observatory (SAO), and NASA c…

Physics010504 meteorology & atmospheric sciencesMagnetic energyDASAstronomy and AstrophysicsMagnetic reconnectionAstrophysics01 natural sciencesNanoflaresMagnetic fieldQC PhysicsPhysics::Space Physics0103 physical sciencesCoronal heatingQB AstronomyAstrophysics::Solar and Stellar Astrophysicssolar corona coronal heating magnetic reconnection010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciences
researchProduct

In Situ Generation of Transverse Magnetohydrodynamic Waves from Colliding Flows in the Solar Corona

2018

This research has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 Research and Innovation Programme (grant agreement No. 647214). V.M.N. acknowledges the support of the BK21 plus program through the National Research Foundation funded by the Ministry of Education of Korea. Transverse magnetohydrodynamic (MHD) waves permeate the solar atmosphere and are a candidate for coronal heating. However, the origin of these waves is still unclear. In this Letter, we analyze coordinated observations from Hinode/Solar Optical Telescope (SOT) and Interface Region Imaging Spectrograph (IRIS) of a prominence/corona…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesF300NDASEnergy fluxF500magnetohydrodynamics (MHD)01 natural sciencesSolar prominenceSun: activity0103 physical sciencesQB AstronomyAstrophysics::Solar and Stellar AstrophysicsCoronal rainwavesactivity [Sun]Magnetohydrodynamic drive010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsSun: coronaoscillations [Sun]Sun:oscillationsAstronomy and AstrophysicsPlasmaSun: filaments prominencesMagnetic fieldComputational physicsTransverse planeQC PhysicsSpace and Planetary SciencePhysics::Space PhysicsWavesfilaments prominences [Sun]MagnetohydrodynamicsThe Astrophysical Journal
researchProduct

MHD simulations of the in situ generation of kink and sausage waves in the solar corona by collision of dense plasma clumps

2019

Funding: This research has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214). P.A. acknowledges funding from his STFC Ernest Rutherford Fellowship (No. ST/R004285/1). This research was supported by the Research Council of Norway through its Centres of Excellence scheme, project number 262622. Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar corona where the highly structured magnetic fields provide efficient wave guides for their propagation. While MHD waves have been observed originating from lower layers of the solar …

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencescorona [Sun]F300NDASFOS: Physical sciencesContext (language use)AstrophysicsF500Parameter space01 natural sciences0103 physical sciencesQB AstronomyAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic drivehelioseismology [Sun]Sun: oscillations010303 astronomy & astrophysicsSun: magnetic fieldsQCSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesQBSun: helioseismologyPhysicsSun: coronaComputer Science::Information Retrievaloscillations [Sun]Astronomy and AstrophysicsMechanicsPlasmaMagnetic fieldWavelengthAmplitudeQC Physicsmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamicsAstronomy & Astrophysics
researchProduct

Modelling of asymmetric nanojets in coronal loops

2021

Context. Observations of reconnection jets in the solar corona are emerging as a possible diagnostic for studying highly elusive coronal heating. Such jets, and in particular those termed nanojets, can be observed in coronal loops and have been linked to nanoflares. However, while models successfully describe the bilateral post-reconnection magnetic slingshot effect that leads to the jets, observations reveal that nanojets are unidirectional or highly asymmetric, with only the jet travelling inward with respect to the coronal loop’s curvature being clearly observed. Aims. The aim of this work is to address the role of the curvature of the coronal loop in the generation and evolution of asym…

F300media_common.quotation_subjectFOS: Physical sciencesAstrophysicsF500magnetic fieldsCurvaturemagnetohydrodynamics (MHD)AsymmetryAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic driveSolar and Stellar Astrophysics (astro-ph.SR)media_commonPhysicsJet (fluid)SunAstronomy and AstrophysicsMechanicsCoronal loopNanoflaresMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceatmospherePhysics::Space PhysicsMagnetohydrodynamicscoronaSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo Circumterrestre
researchProduct

Probing the physics of the solar atmosphere with the Multi-slit Solar Explorer (MUSE): I. Coronal Heating

2022

The Multi-slit Solar Explorer (MUSE) is a proposed NASA MIDEX mission, currently in Phase A, composed of a multi-slit EUV spectrograph (in three narrow spectral bands centered around 171A, 284A, and 108A) and an EUV context imager (in two narrow passbands around 195A and 304A). MUSE will provide unprecedented spectral and imaging diagnostics of the solar corona at high spatial (<0.5 arcsec), and temporal resolution (down to ~0.5s) thanks to its innovative multi-slit design. By obtaining spectra in 4 bright EUV lines (Fe IX 171A , Fe XV 284A, Fe XIX-Fe XXI 108A) covering a wide range of transition region and coronal temperatures along 37 slits simultaneously, MUSE will for the first time …

F300FOS: Physical sciencesF500Astronomy & AstrophysicsACTIVE-REGIONEVENTSFLOWSSolar coronal heating Theoretical models Solar instrumentsINTERFACE-REGIONMAGNETIC RECONNECTIONQB AstronomyTRANSITION REGIONInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)QCQBMCCScience & TechnologyHOT PLASMAAstronomy and Astrophysics3rd-DASALFVENIC WAVESSIMULATIONSQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysical SciencesEUV IMAGING SPECTROMETERAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct