0000000000760044

AUTHOR

Luis N. Epele

showing 7 related works from this author

Monopolium: the key to monopoles

2007

Dirac showed that the existence of one magnetic pole in the universe could offer an explanation for the discrete nature of the electric charge. Magnetic poles appear naturally in most Grand Unified Theories. Their discovery would be of greatest importance for particle physics and cosmology. The intense experimental search carried thus far has not met with success. Moreover, if the monopoles are very massive their production is outside the range of present day facilities. A way out of this impasse would be if the monopoles bind to form monopolium, a monopole- antimonopole bound state, which is so strongly bound, that it has a relatively small mass. Under these circumstances it could be produ…

PhysicsParticle physicsPhysics and Astronomy (miscellaneous)Dirac (video compression format)High Energy Physics::LatticeMagnetic monopoleFísicaFOS: Physical sciencesElectric chargeCosmologyHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Bound stateMagnetic polesEngineering (miscellaneous)Particle Physics - Phenomenology
researchProduct

Looking for magnetic monopoles at LHC with diphoton events

2012

Magnetic monopoles have been a subject of interest since Dirac established the relation between the existence of monopoles and charge quantization. The intense experimental search carried thus far has not met with success. The Large Hadron Collider is reaching energies never achieved before allowing the search for exotic particles in the TeV mass range. In a continuing effort to discover these rare particles we propose here other ways to detect them. We study the observability of monopoles and monopolium, a monopole-antimonopole bound state, at the Large Hadron Collider in the $\gamma \gamma$ channel for monopole masses in the range 500-1000 GeV. We conclude that LHC is an ideal machine to …

Quantum electrodynamicsScattering cross-sectionPhysicsmonopolesParticle physicsLarge Hadron ColliderAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticephotonMagnetic monopoleFOS: Physical sciencesGeneral Physics and AstronomyFísicaHigh Energy Physics - ExperimentmonopoliumNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)Quantization (physics)High Energy Physics - Phenomenology (hep-ph)Bound stateIdeal machinedualityHigh Energy Physics::Experimentproton
researchProduct

Observation of the suppression of the flux of cosmic rays above 4x10^19eV

2008

The energy spectrum of cosmic rays above 2.5 × 10¹⁸ eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index γ of the particle flux, J ∝ E-γ, at energies between 4 × 10¹⁸ eV and 4 × 10¹⁹ eV is 2.69 ± 0.02(stat) ± 0.06(syst), steepening to 4.2 ± 0.4(stat) ± 0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical Phenomenaenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxOsservatorio Pierre Augerspectral indexCosmic rayparticle fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEXTENSIVE AIR-SHOWERSAstrophysicsUPPER LIMIT01 natural sciencesPower lawAugerNuclear physicsENERGY[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmicicosmic rays0103 physical sciencesddc:550Particle flux010303 astronomy & astrophysicsCiencias ExactasPhysicsPierre Auger ObservatorySpectral indexSPECTRUM[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaARRAYHigh Energy Physics::ExperimentSciami atmosferici estesiEnergy (signal processing)
researchProduct

Monopolium production from photon fusion at the Large Hadron Collider

2008

6 pages, 6 figures.-- PACS nrs.: 14.80.Hv; 95.30.Cq; 98.70.-f; 98.80.-k.-- Printed version published Aug 2009.-- ArXiv pre-print available at: http://arxiv.org/abs/0809.0272

[PACS] Elementary particle processesPhysicsParticle physicsFusionElectromagnetic theoryPhotonLarge Hadron ColliderPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeMagnetic monopoleFísicaFOS: Physical sciences[PACS] Magnetic monopolesHigh Energy Physics - PhenomenologyQuantization (physics)High Energy Physics - Phenomenology (hep-ph)Bound state[PACS] Unidentified sources of radiation outside the Solar System[PACS] CosmologyEngineering (miscellaneous)Particle Physics - PhenomenologyThe European Physical Journal C
researchProduct

Primakoff scattering for polarized photons or polarized protons

1993

Abstract We present a way to measure the axial coupling of the proton for the neutral strangeness current in coherent π0 production induced by photon-proton scattering. By means of the γ−Z−π0 triangle anomaly, the parity violating asymmetries for polarized photon or polarized proton Primakoff effect filter the couplings so as to leave the proton axial coupling only. We calculate the relevant observables induced by the electroweak interference and give results for regions of energy and Q2 of possible experimental interest. The polarized proton asymmetry is predicted to be 10−6-10−5 when Q2 ∼ 0.1−0.5 GeV2.

PhysicsNuclear and High Energy PhysicsPhotonProtonScatteringmedia_common.quotation_subjectNuclear TheoryElectroweak interactionStrangenessPolarization (waves)AsymmetryNuclear physicsHigh Energy Physics::ExperimentNuclear ExperimentPrimakoff effectmedia_commonPhysics Letters B
researchProduct

Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory

2008

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth’s crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an E−2ν differential energy spectrum the limit set at 90% C.L. is E2νdNντdEν<1.3×10−7  GeV cm−2 s−1 sr−1 in the energy range 2×1017 eV<E<2×1019  eV.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FLUORESCENCE DETECTORAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyOsservatorio Pierre AugerCosmic ray7. Clean energy01 natural sciencesNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]PACS: 95.55.Vj 95.85.Ry 98.70.SaPionRaggi cosmicimuonSEARCH0103 physical sciencesNeutrinoEARTHPartículas ElementalesElectromagnetismo010306 general physicsCosmic raysCharged currentCiencias ExactasPierre Auger ObservatoryPhysicsAIR-SHOWERSRange (particle radiation)Muon[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicspionand other elementary particlesFísicaDETETOREScosmic ray detectorsEnergia ultra altaRadiación cósmicaCOSMIC-RAYSand other elementary particle detectors13. Climate actionHigh Energy Physics::ExperimentNeutrinoSciami atmosferici estesiLepton
researchProduct

Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

2008

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the ighest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ~6 x 1019 eV and AGN at a distance less than ~75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate fro…

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyOsservatorio Pierre AugerAstrophysicsGALAXY CLUSTER SURVEYAstrophysicsauger01 natural sciencesHigh energy cosmic rayRaggi cosmiciAstrophysical jetGMFObservatoryUltra-high-energy cosmic ray010303 astronomy & astrophysicsPhysicsBL-LACERTAEGreisen–Zatsepin–Kuz’min effect[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGINUHECRAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKRadiación cósmicaAnisotropíaCATALOGobservatoryddc:540EGMFCUTOFFComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRELATIVISTIC JETSActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaCosmic background radiationFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATION[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesextra-galacticPARTICLESAGNAstrophysics::Galaxy AstrophysicsCiencias ExactasPierre Auger ObservatoryANISOTROPYhigh energy cosmic raysSciami atmosferici010308 nuclear & particles physicsFísicaAstronomyAstronomy and AstrophysicsCENTAURUSGalaxyExperimental High Energy Physics
researchProduct