Loss of ATM sensitizes against O6-methylguanine triggered apoptosis, SCEs and chromosomal aberrations.
A critical pre-cytotoxic and -apoptotic DNA lesion induced by methylating carcinogens and chemotherapeutic drugs is O6-methylguanine (O6MeG). The mechanism by which O6MeG causes cell death via apoptosis is only partially understood. The current model ascribes a role to DNA replication and mismatch repair, which converts O6MeG into a critical distal lesion (presumably a DNA double-strand break) that is finally responsible for genotoxicity and apoptosis. Here we analysed whether the PI3-like kinase ATM is involved in this process. ATM is a major player in recognizing and signaling DNA breaks, but most reports are limited to ionizing radiation. Comparing mouse ATM knockout fibroblasts (ATM-/-)…