Lossless and near-lossless image compression based on multiresolution analysis
There are applications in data compression, where quality control is of utmost importance. Certain features in the decoded signal must be exactly, or very accurately recovered, yet one would like to be as economical as possible with respect to storage and speed of computation. In this paper, we present a multi-scale data-compression algorithm within Harten's interpolatory framework for multiresolution that gives a specific estimate of the precise error between the original and the decoded signal, when measured in the L"~ and in the L"p (p=1,2) discrete norms. The proposed algorithm does not rely on a tensor-product strategy to compress two-dimensional signals, and it provides a priori bound…