0000000000760657
AUTHOR
Francesc Aríndiga
Lossless and near-lossless image compression based on multiresolution analysis
There are applications in data compression, where quality control is of utmost importance. Certain features in the decoded signal must be exactly, or very accurately recovered, yet one would like to be as economical as possible with respect to storage and speed of computation. In this paper, we present a multi-scale data-compression algorithm within Harten's interpolatory framework for multiresolution that gives a specific estimate of the precise error between the original and the decoded signal, when measured in the L"~ and in the L"p (p=1,2) discrete norms. The proposed algorithm does not rely on a tensor-product strategy to compress two-dimensional signals, and it provides a priori bound…
Learning-based multiresolution transforms with application to image compression
In Harten's framework, multiresolution transforms are defined by predicting finer resolution levels of information from coarser ones using an operator, called prediction operator, and defining details (or wavelet coefficients) that are the difference between the exact and predicted values. In this paper we use tools of statistical learning in order to design a more accurate prediction operator in this framework based on a training sample, resulting in multiresolution decompositions with enhanced sparsity. In the case of images, we incorporate edge detection techniques in the design of the prediction operator in order to avoid Gibbs phenomenon. Numerical tests are presented showing that the …