0000000000761181
AUTHOR
Ingo Schnell
Determining the Geometry of Hydrogen Bonds in Solids with Picometer Accuracy by Quantum-Chemical Calculations and NMR Spectroscopy
The structure of multiply hydrogen-bonded systems is determined with picometer accuracy by a combined solid-state NMR and quantum-chemical approach. On the experimental side, advanced 1H-15N dipolar recoupling NMR techniques are capable of providing proton-nitrogen distances of up to about 250 pm with an accuracy level of +/-1 pm for short distances (i.e., around 100 pm) and +/-5 pm for longer ones (i.e., 180 to 250 pm). The experiments were performed under fast magic-angle spinning, which ensures sufficient dipolar decoupling and spectral resolution of the 1H resonance lines. On the quantum-chemical side, the structures of the hydrogen-bonded systems were computationally optimised, yieldin…
Self-assembly of programmed building blocks into structurally uniform dendrimers.
Selective and independent dimerization of tri- and tetraurea derivatives was used to build up dendritic assemblies which are uniform in size and structure. Dendrimers with the total molecular masses of about 25 000 g/mol were obtained. The existence of uniform assemblies was proved by 1H and 1H DOSY NMR experiments and also by dynamic light scattering.