0000000000761388

AUTHOR

Sebastian Trippel

showing 4 related works from this author

Strong-field physics in the molecular frame

2019

XXI International Conference on Ultrafast Phenomena 2018, UP 2018, Hamburg, Germany, 15 Jul 2018 - 20 Jul 2018; The European physical journal / Web of Conferences 205, 07002 (2019). doi:10.1051/epjconf/201920507002

Physics010308 nuclear & particles physicsPhysicsQC1-999Frame (networking)Strong field53001 natural sciencesComputational physicsIonization0103 physical sciencesMoleculeddc:530Physics::Chemical Physics010306 general physics
researchProduct

The Deuteron Spin-dependent Structure Function g1(d) and its First Moment

2007

We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.

Nuclear and High Energy PhysicsParticle physicsg(1)FOS: Physical sciencesAbsolute valuespinspin structure function g101 natural sciencesCOMPASSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)polarised deep inelastic scatteringdeep inelastic scatteringstructure function0103 physical sciencesCOMPASS experimentA(1)polarised deep inelastic scattering; COMPASS; spin structure function g1; QCD analysisSinglet state010306 general physicsSpin-½Quantum chromodynamicsPhysics010308 nuclear & particles physicsDeep inelastic scatteringGluonQCD analysisDistribution functionHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

2007

New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.

QuarkdeuteronNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSivers asymmetryHadrontransversity and Sivers functionFOS: Physical sciencesCOMPASS01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)nucleon structure; transverse spin and transverse momentum; transversity and Sivers functions; deuteron; COMPASS experimentCompass0103 physical sciencesCOMPASS experimentCollins010306 general physicsNuclear ExperimentCOMPASS experimenttransversityPhysicsLarge Hadron ColliderMuonSpectrometer010308 nuclear & particles physicsScatteringtransversity and Sivers functionsnucleon structureHigh Energy Physics::Experimenttransverse spin and transverse momentumasymmetryParticle Physics - Experimenttransverse single-spin asymmetry
researchProduct

Setting the photoelectron clock through molecular alignment

2020

The interaction of strong laser fields with matter intrinsically provides a powerful tool for imaging transient dynamics with an extremely high spatiotemporal resolution. Here, we study strong-field ionisation of laser-aligned molecules, and show a full real-time picture of the photoelectron dynamics in the combined action of the laser field and the molecular interaction. We demonstrate that the molecule has a dramatic impact on the overall strong-field dynamics: it sets the clock for the emission of electrons with a given rescattering kinetic energy. This result represents a benchmark for the seminal statements of molecular-frame strong-field physics and has strong impact on the interpreta…

Chemical Physics (physics.chem-ph)Atomic Physics (physics.atom-ph)ScienceChemical physicsQQuantum physicsFOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaArticlePhysics - Atomic PhysicsStrong field ionizationTDDFTPhysics - Chemical Physicslcsh:QAtomic and molecular physicsddc:500Physics - Atomic and Molecular Clusterslcsh:ScienceAtomic and Molecular Clusters (physics.atm-clus)Applied optics
researchProduct