0000000000761412
AUTHOR
Ana Hurtado
Volume, energy and generalized energy of unit vector fields on Berger spheres: stability of Hopf vector fields
We study to what extent the known results concerning the behaviour of Hopf vector fields, with respect to volume, energy and generalized energy functionals, on the round sphere are still valid for the metrics obtained by performing the canonical variation of the Hopf fibration.
Spacelike energy of timelike unit vector fields on a Lorentzian manifold
On a Lorentzian manifold, we define a new functional on the space of unit timelike vector fields given by the L2 norm of the restriction of the covariant derivative of the vector field to its orthogonal complement. This spacelike energy is related with the energy of the vector field as a map on the tangent bundle endowed with the Kaluza–Klein metric, but it is more adapted to the situation. We compute the first and second variation of the functional and we exhibit several examples of critical points on cosmological models as generalized Robertson–Walker spaces and Godel universe, on Einstein and contact manifolds and on Lorentzian Berger’s spheres. For these critical points we have also stu…