0000000000762780

AUTHOR

Elhadj Dahia

0000-0001-7206-0115

showing 3 related works from this author

Factorization of absolutely continuous polynomials

2013

In this paper we study the ideal of dominated (p,s)-continuous polynomials, that extend the nowadays well known ideal of p-dominated polynomials to the more general setting of the interpolated ideals of polynomials. We give the polynomial version of Pietsch s factorization Theorem for this new ideal. Our factorization theorem requires new techniques inspired in the theory of Banach lattices.

Discrete mathematicsMathematics::Commutative AlgebraPietsch's domination theoremApplied MathematicsDiscrete orthogonal polynomialsClassical orthogonal polynomialsMacdonald polynomialsDifference polynomialsAbsolutely continuous polynomialsFactorization of polynomialsHahn polynomialsWilson polynomialsOrthogonal polynomialsMATEMATICA APLICADAAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Factorization of strongly (p,sigma)-continuous multilinear operators

2013

We introduce the new ideal of strongly-continuous linear operators in order to study the adjoints of the -absolutely continuous linear operators. Starting from this ideal we build a new multi-ideal by using the composition method. We prove the corresponding Pietsch domination theorem and we present a representation of this multi-ideal by a tensor norm. A factorization theorem characterizing the corresponding multi-ideal - which is also new for the linear case - is given. When applied to the case of the Cohen strongly -summing operators, this result gives also a new factorization theorem.

Unbounded operatorDiscrete mathematicsMultilinear mapPrimary 46A32Algebra and Number TheoryMathematics::Commutative AlgebraTensor normSpectral theoremOperator theoryPietsch domination theoremMultilinear operatorsymbols.namesakeFactorizationNorm (mathematics)Weierstrass factorization theoremsymbolsSecondary 47B10FactorizationMATEMATICA APLICADAOperator normAbsolutely continuous operatorsMathematics
researchProduct

Domination spaces and factorization of linear and multilinear summing operators

2015

[EN] It is well known that not every summability property for multilinear operators leads to a factorization theorem. In this paper we undertake a detailed study of factorization schemes for summing linear and nonlinear operators. Our aim is to integrate under the same theory a wide family of classes of mappings for which a Pietsch type factorization theorem holds. Our construction includes the cases of absolutely p-summing linear operators, (p, sigma)-absolutely continuous linear operators, factorable strongly p-summing multilinear operators, (p(1), ... , p(n))-dominated multilinear operators and dominated (p(1), ... , p(n); sigma)-continuous multilinear operators.

Discrete mathematicsMultilinear mapPietsch's domination theoremMultilinear summing operators010102 general mathematicsMathematics::Classical Analysis and ODEs010103 numerical & computational mathematicsPietsch's domination theorem factorization of operators multilinear summing operators.Factorization of operators01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics (miscellaneous)FactorizationFOS: Mathematics0101 mathematicsMATEMATICA APLICADAMathematics
researchProduct