0000000000762787
AUTHOR
Andrea Marini
Spinorial formulation of the GW-BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides
In many paradigmatic materials, such as transition metal dichalcogenides, the role played by the spin degrees of freedom is as important as the one played by the electron-electron interaction. Thus an accurate treatment of the two effects and of their interaction is necessary for an accurate and predictive study of the optical and electronic properties of these materials. Despite the fact that the GW-BSE approach correctly accounts for electronic correlations, the spin-orbit coupling effect is often neglected or treated perturbatively. Recently, spinorial formulations of GW-BSE have become available in different flavors in material-science codes. However, an accurate validation and comparis…
Observation of an excitonic Mott transition through ultrafast core-cum-conduction photoemission spectroscopy
Time-resolved soft-X-ray photoemission spectroscopy is used to simultaneously measure the ultrafast dynamics of core-level spectral functions and excited states upon excitation of excitons in WSe$_2$. We present a many-body approximation for the Green's function, which excellently describes the transient core-hole spectral function. The relative dynamics of excited-state signal and core levels reveals a delayed core-hole renormalization due to screening by excited quasi-free carriers, revealing an excitonic Mott transition. These findings establish time-resolved core-level photoelectron spectroscopy as a sensitive probe of subtle electronic many-body interactions and an ultrafast electronic…
Time-dependent screening explains the ultrafast excitonic signal rise in 2D semiconductors
We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers towards small $\textit{Active Excitonic Regions}$ around K, enhancing the dielectric screening. The acc…
Strong Exciton-Coherent Phonon Coupling in Single-Layer MoS2
Broadband transient absorption with sub-20fs temporal resolution, supported by ab-initio calculations, quantitatively provides the strength of exciton-coherent phonon coupling in 1L-MoS2, showing a resonant profile around the C exciton.
Intravalley spin-flip relaxation dynamics in single-layer WS2
Two-dimensional Transition Metal Dichalcogenides (TMDs) have been widely studied because of the peculiar electronic band structure and the strong excitonic effects [1]. In these materials the large spin-orbit coupling lifts the spin degeneracy of the valence (VB) and the conduction band (CB) giving rise to the A and B interband excitonic transitions. In monolayer WS2, the spins of electrons in the lowest CB and in the highest VB at K/K' point of the Brillouin zone are antiparallel resulting in an intravalley dark exciton state at a lower energy than the bright exciton, see left panel of Fig.1. On the one hand, the presence of dark excitons has been revealed indirectly from the observation o…
Spinorial formulation of the GW-BSE equations and spin properties of excitons in 2D Transition Metal Dichalcogenides
In many paradigmatic materials, like Transition Metal Dichalcogenides, the role played by the spin degrees of freedom is as important as the one played by the electron-electron interaction. Thus an accurate treatment of the two effects and of their interaction is necessary for an accurate and predictive study of the optical and electronic properties of these materials. Despite the GW-BSE approach correctly accounts for electronic correlations the spin-orbit coupling effect is often neglected or treated perturbatively. Recently spinorial formulations of GW-BSE have become available in different flavours in material-science codes. Still an accurate validation and comparison of different appro…
Real-time observation of the intravalley spin-flip process in single-layer WS2
We use helicity-resolved transient absorption spectroscopy to track intravalley scattering dynamics in monolayer WS2. We find that spin-polarized carriers scatter from upper to lower conduction band by reversing their spin orientation on a sub-ps timescale.
Diffusion coefficient of PVA Fricke gel dosimeters
Fricke gel dosimeters based on various matrix has been studied for a long time as 3D dosimetric system for radiotherapy. Selfoxidation and loss of spatial resolution due to diffusion have been the main issues that have impaired the affirmation of this technique so far. As part of an Italian nation-wide research program, we were interested in develop new gel formulations that are simple, reproducible and non toxic. We studied the one dimensional diffusion coefficient of Fe3+ ions inside Fricke gel dosimeters based on a matrix of PVA cross-linked with a di-aldehyde. With a spectrophotometer equipped with a moving tray we were able to collect absorbance measurements at different positions of t…
Strongly Coupled Coherent Phonons in Single-Layer MoS 2
We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution ($\sim$20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single layer (1L) MoS$_2$, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane $A'_{1}$ phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by…
Time-resolved core-level photoemission data of tungsten diselenide
Pump-probe core-level photoemission spectroscopy data of tungsten diselenide (WSe2) measured using an electron momentum microscope at the FLASH Free-electron laser.