0000000000762811

AUTHOR

Stefanie Albrecht

Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity

Abstract Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T…

research product

Recovery from Toxic-Induced Demyelination Does Not Require the NG2 Proteoglycan

NG2 cells are defined as CNS cells expressing chondroitin sulfate proteoglycan nerve/glia antigen. The vast majority of NG2-positive cells also express platelet-derived growth factor receptor alpha (PDGFRα) and are oligodendroglial progenitors (OPC). In addition a subpopulation of pericytes expresses NG2, but is positive for PDGF receptor beta (PDGFRβ) [1]. NG2-positive OPC comprise approximately 5% of the cells in the CNS where they are evenly distributed in grey and white matter [2, 3]. NG2-positive OPC form synapses with neurons [4–6] and react to brain injury with proliferation, as has been shown in several animal models as well as in human demyelinating and degenerative diseases [7–9].…

research product

The transmembrane receptor Uncoordinated5 (Unc5) is essential for heart lumen formation in Drosophila melanogaster

AbstractTransport of liquids or gases in biological tubes is fundamental for many physiological processes. Our knowledge on how tubular organs are formed during organogenesis and tissue remodeling has increased dramatically during the last decade. Studies on different animal systems have helped to unravel some of the molecular mechanisms underlying tubulogenesis. Tube architecture varies dramatically in different organs and different species, ranging from tubes formed by several cells constituting the cross section, tubes formed by single cells wrapping an internal luminal space or tubes that are formed within a cell. Some tubes display branching whereas others remain linear without interse…

research product