0000000000765106

AUTHOR

Subhaditya Bhattacharya

Neutrinoless double β decay with small neutrino masses

Proceedings of the Corfu Summer Institute 2012 "School and Workshops on Elementary Particle Physicsand Gravity", September 8-27, 2012, Corfu (Greece). PoS(Cofu2012)028.

research product

Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses

Neutrinoless double beta ($0\nu\beta\beta$) decay can in general produce electrons of either chirality, in contrast with the minimal Standard Model (SM) extension with only the addition of the Weinberg operator, which predicts two left-handed electrons in the final state. We classify the lepton number violating (LNV) effective operators with two leptons of either chirality but no quarks, ordered according to the magnitude of their contribution to \znbb decay. We point out that, for each of the three chirality assignments, $e_Le_L, e_Le_R$ and $e_Re_R$, there is only one LNV operator of the corresponding type to lowest order, and these have dimensions 5, 7 and 9, respectively. Neutrino masse…

research product

A realistic model of neutrino masses with a large neutrinoless double beta decay rate

The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta ($0\nu\beta\beta$) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general $0\nu\beta\beta$ decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to $0\nu\beta\beta$ decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop…

research product