0000000000765529
AUTHOR
Taverna Simona
Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: State of the art and new perspectives
Exosomes are nanometer-sized vesicles (40-100 nm diameter) of endocytic origin released from different cell types under both normal and pathological conditions. They function as cell free messengers, playing a relevant role in the cell-cell communication that is strongly related to the nature of the molecules (proteins, mRNAs, miRNAs, and lipids) that they transport. Tumor cells actively shed exosomes into their surrounding microenvironment and growing evidence indicates that these vesicles have pleiotropic functions in the regulation of tumor progression, promoting immune escape, tumor invasion, neovascularization, and metastasis. During the last few years remarkable efforts have been made…
SWATH-MS reveals a key role for IPO7 in the molecular mechanism underlying antitumor effects of curcumin on Chronic Myelogenous Leukemia cells
Imatinib represents the elective drug for the treatment of patients with Chronic Myelogenous Leukemia (CML). However, albeit it is effective in controlling CML and preventing progression to blast crisis (BC), it is not curative. Therefore, it is mandatory to find novel therapeutic combinations to completely eradicate CML. It was described that CML cells expressing higher level of BCR-ABL show an increased glucose metabolism (termed aerobic glycolysis or Warburg effect) correlated with a non-hypoxic induction of HIF-1α, factor implicated in leukemia stem cells (LSCs) maintenance[1,2]. In the present study, we demonstrated that curcumin, an Indian spice with multiple anticancer properties, is…