0000000000765878
AUTHOR
Arnaud Gaudin
3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis.
The adult Xenopus presents the unique capability to smell odors both in water and air thanks to two different olfactory pathways. Nevertheless, the tadpole can initially perceive only water-borne odorants, as the olfactory receptor neurons (ORN) that will detect air-borne odorants develop later. Such a phenomenon requires major reorganization processes. Here we focused on the precise description of the neuroanatomical modifications occurring in the olfactory bulb (OB) of the tadpole throughout metamorphosis. Using both carbocyanine dyes and lectin staining, we investigated the evolution of ORN projection patterns into the OB from Stages 47 to 66, thus covering the period of time when all th…
Ontogenesis of the Extra-Bulbar Olfactory Pathway inXenopus laevis
Although the development, anatomy, and physiology of the vertebrate olfactory system are fairly well understood, there is still no clear definition of the terminal nerve complex acknowledged by all. Among the most debated matters is whether or not the extrabulbar projections found in anamniotes should or should not be considered part of the terminal nerve complex. In this context, we investigated the early development of the extrabulbar pathway in Xenopus larvae from placodal differentiation to postmetamorphic stages. We showed that the extrabulbar fibers become visible around Stage 42 and are conserved throughout metamorphosis. We confirmed previous reports concerning their central project…