0000000000766251

AUTHOR

Olgerts Lielausis

History and results of the Riga dynamo experiments

On 11 November 1999, a self-exciting magnetic eigenfield was detected for the first time in the Riga liquid sodium dynamo experiment. We report on the long history leading to this event, and on the subsequent experimental campaigns which provided a wealth of data on the kinematic and the saturated regime of this dynamo. The present state of the theoretical understanding of both regimes is delineated, and some comparisons with other laboratory dynamo experiments are made.

research product

Colloquium: Laboratory experiments on hydromagnetic dynamos

Cosmic magnetic fields, including the fields of planets, stars, and galaxies, are believed to be caused by dynamo action in moving electrically conducting fluids. While the theory and numerics of hydromagnetic dynamos have flourished during recent decades, an experimental validation of the effect was missing until recently. We sketch the long history towards a working laboratory dynamo. We report on the first successful experiments at the sodium facilities in Riga and Karlsruhe, and on other experiments which are carried out or planned at various places in the world.

research product

Control of flow separation using electromagnetic forces

Introduction If a fluid is electrically conductive, its flow may be controlled using electromagnetic forces. Meanwhile, this technique is a recognized tool even on an industrial scale for handling highly conductive materials like liquid metals. However, also fluids of low electrical conductivity as considered in the present study, like sea--water and other electrolytes, permit electromagnetic flow control. Experimental results on the prevention of flow separation by means of a streamwise, wall parallel Lorentz force acting on the suction side of inclined flat plates and hydrofoils will be presented. Force Configuration The stripwise arrangement of permanent magnets and electrodes of alterna…

research product