0000000000767413

AUTHOR

L. Butikofer

showing 2 related works from this author

Results from a calibration of XENON100 using a source of dissolved radon-220

2017

A Rn 220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb 212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn 222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn 222 . Using the delayed coincidence of R…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsDark matterFOS: Physical scienceschemistry.chemical_elementRadon01 natural sciencesCoincidenceNuclear physicsRecoilOpticsXenonXENON DARK MATTER WIMPS CALIBRATION RADON0103 physical sciencesCalibration[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPhysics010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsOrder (ring theory)Instrumentation and Detectors (physics.ins-det)chemistryHigh Energy Physics::Experimentbusiness
researchProduct

Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

2017

We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,\sigma$, however no other more significant modulation is observed. The expected annual modulation of a dark matt…

Physics and Astronomy (all) XENON DARK MATTER MODULATION TPCPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterGeneral Physics and AstronomyFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Recoil0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPseudovectorInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)Coupling (probability)ModulationAstrophysics - Instrumentation and Methods for AstrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct