0000000000767705

AUTHOR

Salvatore Calabrese

The role of hydrology on enhanced weathering for carbon sequestration in soils

Natural climate solutions are attracting considerable research effort with the aim of reducing greenhouse gas emissions or sequestering carbon within the oceans or terrestrial environments. In this context, enhanced weathering can be a powerful means of increasing the natural weathering reaction rates, by adding some highly reactive minerals to the soil. The present study evaluates the effects of hydrologic fluctuations on Forsterite dissolution, a silicate mineral also known as Mg-olivine. This mineral is available in many parts of the world and its reaction rates with CO2 are much higher than those of other minerals. Toward this goal, we developed a mathematical model coupling biogeochemi…

research product

The NUMEN project @ LNS: Status and perspectives

The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and β−β− decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challengingly low (a few nb), being the tota…

research product

Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

Abstract The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ). In this view measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections are performed with high-accuracy. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and β-β- decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challe…

research product

Nano- to Global-Scale Uncertainties in Terrestrial Enhanced Weathering.

Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26). EW relies on the accelerated dissolution of crushed silicate rocks applied to soils and is considered a sustainable solution requiring limited technology. While EW has a high theoretical potential of sequestering CO2, research is still needed to provide accurate estimates of carbon (C) sequestration when applying different silicate materials across distinct climates and major soil types in combination with a variety of plants. Here we elaborate on fundamental …

research product

A cropland application of Enhanced Weathering in the Mediterranean area to face climate change and preserve natural resources

The goal of limiting the use of natural resources and combatting climate change has led to the improvement of agricultural techniques and the development of some Carbon Dioxide Removal (CDR) techniques, given their proficiency to sequester carbon from the atmospheric CO2 and to store it in more stable forms within oceans, plants, soil, or other terrestrial environments. Among them, Enhanced Weathering (EW) is regarded as one of the most promising. This consists of amending soils with silicate minerals, such as olivine, so as to speed up the weathering process that naturally occurs in soils. This work aims to couple a model for the resolution of the agro-hydrological balance in the active so…

research product

Effects of precipitation seasonality, vegetation cycle, and irrigation on enhanced weathering

Enhanced Weathering (EW) is a promising strategy for carbon sequestration, but several open questions remain regarding the actual rates of dissolution in conditions of natural hydroclimatic variability in comparison to laboratory experiments. In this context, models play a pivotal role, as they allow exploring and predicting EW dynamics under different environmental conditions. Here a comprehensive hydro-biogeochemical model has been applied to four cropland case studies (i.e., Sicily and the Padan plain in Italy and California and Iowa in the USA) characterized by different rainfall seasonality, vegetation (i.e., wheat for Sicily and California and corn for Padan plain and Iowa), and soil …

research product

Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites

Enhanced weathering (EW) is a promising strategy for carbon sequestration, but several open questions remain regarding the actual rates of dissolution in conditions of natural hydroclimatic variability in comparison to laboratory experiments. In this context, models play a pivotal role, as they allow exploring and predicting EW dynamics under different environmental conditions. Here a comprehensive hydro-biogeochemical model has been applied to four cropland case studies (i.e., Sicily and the Padan plain in Italy and California and Iowa in the USA) characterized by different rainfall seasonality, vegetation (i.e., wheat for Sicily and California and corn for the Padan plain and Iowa), and s…

research product

Recent results on heavy-ion direct reactions of interest for 0νββ decay at INFN - LNS

Abstract Neutrinoless double beta decay of nuclei, if observed, would have important implications on fundamental physics. In particular it would give access to the effective neutrino mass. In order to extract such information from 0νββ decay half-life measurements, the knowledge of the Nuclear Matrix Elements (NME) is of utmost importance. In this context the NUMEN and the NURE projects aim to extract information on the NME by measuring cross sections of Double Charge Exchange reactions in selected systems which are expected to spontaneously decay via 0νββ. In this work an overview of the experimental challenges that NUMEN is facing in order to perform the experiments with accelerated beams…

research product

New Results from the NUMEN Project

International audience; NUMEN aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. First evidence about the possibility to get quantitative information about NME from experiments is found for the (^18O,^18Ne) and (^20Ne,^20O) reactions. Moreover, to infer the neutrino average masses from the possible measurement of the half-life of 0νββ decay, the knowledge of the NME is a crucial aspect. The key tools for this project are the high resolution Superconducting Cyclotron beam…

research product

The NUMEN project @ LNS : Status and perspectives

The aim of the NUMEN project is to access the Nuclear Matrix Elements (NME), involved in the half life of the neutrinoless double beta decay (0νββ), by measuring the cross sections of Heavy Ions (HI) induced Double Charge Exchange (DCE) reactions with high accuracy. First evidence of the possibility to get quantitative information about NME from experiments is shown in the reaction 40Ca(18O,18Ne)40Ar at 270 MeV, performed with MAGNEX spectrometer using Superconducting Cyclotron (CS) beams at INFN - Laboratory Nazionali del Sud (LNS) in Catania. Preliminary tests on 116Sn and 116Cd target are already performed. High beam intensity is the new frontiers for these studies. peerReviewed

research product

THE ROLE OF HYDROLOGICAL PROCESSES ON ENHANCED WEATHERING FOR CARBON SEQUESTRATION IN AGRICULTURAL SOILS

With the aim to face climate change, some NCS (Natural Climate Solutions) are currently studied given their capability to sequester carbon from the atmospheric CO2, by means of some natural processes, and to store it within oceans, plants, soil, or other terrestrial environments. Among all the existing NCS, Enhanced Weathering (EW) acts in speeding up the chemical weathering that naturally occurs in soils. This is achieved by amending soils with crushed highly reactive silicate minerals, such as forsterite, better known as olivine. In general, EW reactions are faster at high temperature and soil water content and low soil pH, demonstrating that the most suitable places in the world to apply…

research product

The Role of Hydrological Processes on Enhanced Weathering for Carbon Sequestration in Cropland Areas: An Application to Italy

Aiming at facing climate change, some CDR (Carbon Dioxide Removal) techniques are currently studied given their capability to sequester carbon from the atmospheric CO2 and to store it within oceans, plants, soil, or other terrestrial environments. Among them, Enhanced Weathering (EW), that acts in speeding up the chemical weathering naturally occurring in soils through the amendments of highly reactive silicate minerals, is referred to as one of the most promising. Hot and humid climates provide the best conditions for EW, since reactions are faster at high temperature, high soil water content and low soil pH. This study presents a dynamic mass balance model that explores ecohydrological, b…

research product

The role of hydrology on enhanced weathering for carbon sequestration II. From hydroclimatic scenarios to carbon-sequestration efficiencies

Abstract Enhanced weathering (EW) scenarios are analyzed using the model presented in Cipolla et al. (2020). We explore the role of different hydroclimatic forcing on carbon-sequestration efficiencies. We also investigate whether increasing soil carbon content improves weathering conditions. We link olivine weathering rates to pH variations and quantify the suitability of hydroclimatic regimes to EW, based on rainfall intensity and frequency. The results show that the amount of CO 2 reacting with olivine and ending up in solution in the form of HCO 3 − and CO 3 2 − increases with mean annual precipitation (MAP) up to 2000 mm, but then tapers off for higher MAPs. On the contrary, the sequest…

research product

Recent results on Heavy-Ion induced reactions of interest for 0νββ decay

An updated overview of recent results on Heavy-Ion induced reactions of interest for neutrinoless double beta decay is reported in the framework of the NUMEN project. The NUMEN idea is to study heavy-ion induced Double Charge Exchange (DCE) reactions with the aim to get information on the nuclear matrix elements for neutrinoless double beta (0νββ) decay. Moreover, to infer the neutrino average masses from the possible measurement of the half- life of 0νββ decay, the knowledge of the nuclear matrix elements is a crucial aspect. Uma visão geral atualizada dos resultados recentes sobre reações induzidas por íons pesados ​​de interesse para o decaimento beta duplo sem neutrinos é relatada na es…

research product

Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay

Neutrinoless double beta decay (0v\b{eta}\b{eta}) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research "beyond Standard Model" and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0v\b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extr…

research product

The effects of seasonal variability of precipitation and vegetation cycle on enhanced weathering for carbon sequestration

<p>Enhanced weathering (EW) is one of the most promising technologies for sequestering atmospheric carbon. It consists on accelerating the chemical weathering fluxes naturally occurring in soils, by means of the addition of silicate minerals (i.e., <em>forsterite</em>), used as amendments, to the soil. If crushed into micrometer-sized particles, these minerals are characterized by high dissolution rates, that may be further improved under high soil water content and low pH conditions. Before actually applying EW technique at the global scale for carbon sequestration, an in-depth characterization of weathering and carbon sequestration rates, under di…

research product

The role of hydrological processes on enhanced weathering for carbon sequestration in soils in tropical areas

<p>To mitigate global warming, a noticeable research effort is being devoted to NCS (Natural Climate Solutions) as means to reduce greenhouse gas emissions or sequester carbon within the oceans or terrestrial environments by exploiting natural processes. Enhanced weathering<strong> </strong>is a NCS that aims to increase the weathering reaction rates of silicate minerals, by amending soils with crushed reactive minerals. Various studies have shown that this technique is favored by hot and humid climates (i.e., tropical ecosystems), since weathering reactions are mostly effective under high temperature and soil moisture. Despite olivine dissolution d…

research product

NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay

Neutrinoless double beta decay (0{\nu}\b{eta}\b{eta}) is considered the best potential resource to determine the absolute neutrino mass scale. Moreover, if observed, it will signal that the total lepton number is not conserved and neutrinos are their own anti-particles. Presently, this physics case is one of the most important research beyond Standard Model and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the \b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. The 0{\nu}\b{eta}\b{eta} decay rate can be expressed as a product of independent factors: the phase-space factors, the nuclear matrix elemen…

research product

The role of hydrology on enhanced weathering for carbon sequestration I. Modeling rock-dissolution reactions coupled to plant, soil moisture, and carbon dynamics

Abstract Enhanced Weathering (EW) resulting from soil amendment with highly reactive silicate minerals is regarded as one of the most effective techniques for carbon sequestration. While in laboratory conditions silicate minerals dissolution rates are well characterized, in field conditions the rate of the dissolution reaction is more difficult to predict, not least because it interacts with soil, plant, and hydrologic processes. Here we present a dynamic mass balance model connecting biogeochemical and ecohydrological dynamics to shed light on these intertwined processes involved in EW. We focus on the silicate mineral olivine, for its faster laboratory dissolution rate, and pay particular…

research product